Suppr超能文献

使用诱饵排列的无空值错误发现率控制

Null-free False Discovery Rate Control Using Decoy Permutations.

作者信息

He Kun, Li Meng-Jie, Fu Yan, Gong Fu-Zhou, Sun Xiao-Ming

机构信息

Iinstitute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190 China.

University of Chinese Academy of Sciences, Beijing, 100049 China.

出版信息

Acta Math Appl Sin. 2022;38(2):235-253. doi: 10.1007/s10255-022-1077-5. Epub 2022 Apr 9.

Abstract

The traditional approaches to false discovery rate (FDR) control in multiple hypothesis testing are usually based on the null distribution of a test statistic. However, all types of null distributions, including the theoretical, permutation-based and empirical ones, have some inherent drawbacks. For example, the theoretical null might fail because of improper assumptions on the sample distribution. Here, we propose a null distribution-free approach to FDR control for multiple hypothesis testing in the case-control study. This approach, named , simply builds on the ordering of tests by some statistic or score, the null distribution of which is not required to be known. Competitive decoy tests are constructed from permutations of original samples and are used to estimate the false target discoveries. We prove that this approach controls the FDR when the score function is symmetric and the scores are independent between different tests. Simulation demonstrates that it is more stable and powerful than two popular traditional approaches, even in the existence of dependency. Evaluation is also made on two real datasets, including an arabidopsis genomics dataset and a COVID-19 proteomics dataset.

摘要

在多重假设检验中,传统的错误发现率(FDR)控制方法通常基于检验统计量的零分布。然而,所有类型的零分布,包括理论型、基于排列型和经验型的,都有一些固有缺陷。例如,理论零假设可能会因为对样本分布的假设不当而失效。在此,我们提出一种在病例对照研究中用于多重假设检验的FDR控制的无零分布方法。这种方法,名为 ,简单地基于某个统计量或分数对检验进行排序构建,其零分布无需已知。竞争性诱饵检验由原始样本的排列构建而成,并用于估计错误的目标发现。我们证明,当分数函数对称且不同检验之间的分数相互独立时,该方法可控制FDR。模拟表明,即使存在依赖性,它也比两种流行的传统方法更稳定、更强大。我们还对两个真实数据集进行了评估,包括一个拟南芥基因组学数据集和一个COVID - 19蛋白质组学数据集。

相似文献

1
Null-free False Discovery Rate Control Using Decoy Permutations.使用诱饵排列的无空值错误发现率控制
Acta Math Appl Sin. 2022;38(2):235-253. doi: 10.1007/s10255-022-1077-5. Epub 2022 Apr 9.
4
A new estimation of protein-level false discovery rate.一种新的蛋白质水平假发现率估计方法。
BMC Genomics. 2018 Aug 13;19(Suppl 6):567. doi: 10.1186/s12864-018-4923-3.
8
Decoy-free protein-level false discovery rate estimation.无诱饵的蛋白质水平假发现率估计。
Bioinformatics. 2014 Mar 1;30(5):675-81. doi: 10.1093/bioinformatics/btt431. Epub 2013 Aug 6.

本文引用的文献

1
IPAD: Stable Interpretable Forecasting with Knockoffs Inference.IPAD:基于仿冒品推断的稳定可解释预测
J Am Stat Assoc. 2020;115(532):1822-1834. doi: 10.1080/01621459.2019.1654878. Epub 2019 Sep 17.
3
RANK: Large-Scale Inference with Graphical Nonlinear Knockoffs.RANK:基于图形非线性仿样的大规模推断
J Am Stat Assoc. 2020;115(529):362-379. doi: 10.1080/01621459.2018.1546589. Epub 2019 Apr 11.
5
Weighted False Discovery Rate Control in Large-Scale Multiple Testing.大规模多重检验中的加权错误发现率控制
J Am Stat Assoc. 2018;113(523):1172-1183. doi: 10.1080/01621459.2017.1336443. Epub 2018 Jun 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验