Suppr超能文献

利用 Stabl 发现稀疏、可靠的组学生物标志物

Discovery of sparse, reliable omic biomarkers with Stabl.

机构信息

Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University, Stanford, CA, USA.

Department of Pediatrics, Stanford University, Stanford, CA, USA.

出版信息

Nat Biotechnol. 2024 Oct;42(10):1581-1593. doi: 10.1038/s41587-023-02033-x. Epub 2024 Jan 2.

Abstract

Adoption of high-content omic technologies in clinical studies, coupled with computational methods, has yielded an abundance of candidate biomarkers. However, translating such findings into bona fide clinical biomarkers remains challenging. To facilitate this process, we introduce Stabl, a general machine learning method that identifies a sparse, reliable set of biomarkers by integrating noise injection and a data-driven signal-to-noise threshold into multivariable predictive modeling. Evaluation of Stabl on synthetic datasets and five independent clinical studies demonstrates improved biomarker sparsity and reliability compared to commonly used sparsity-promoting regularization methods while maintaining predictive performance; it distills datasets containing 1,400-35,000 features down to 4-34 candidate biomarkers. Stabl extends to multi-omic integration tasks, enabling biological interpretation of complex predictive models, as it hones in on a shortlist of proteomic, metabolomic and cytometric events predicting labor onset, microbial biomarkers of pre-term birth and a pre-operative immune signature of post-surgical infections. Stabl is available at https://github.com/gregbellan/Stabl .

摘要

高通量组学技术在临床研究中的采用,加上计算方法,产生了大量候选生物标志物。然而,将这些发现转化为真正的临床生物标志物仍然具有挑战性。为了促进这一过程,我们引入了 Stabl,这是一种通用的机器学习方法,通过将噪声注入和数据驱动的信噪比阈值集成到多变量预测建模中,识别出稀疏、可靠的生物标志物集。Stabl 在合成数据集和五个独立的临床研究中的评估表明,与常用的促进稀疏性的正则化方法相比,它提高了生物标志物的稀疏性和可靠性,同时保持了预测性能;它将包含 1400-35000 个特征的数据集浓缩到 4-34 个候选生物标志物。Stabl 可扩展到多组学集成任务,能够对复杂的预测模型进行生物学解释,因为它可以精确定位预测分娩开始的蛋白质组学、代谢组学和细胞计量学事件、早产的微生物生物标志物以及术后感染的术前免疫特征的候选清单。Stabl 可在 https://github.com/gregbellan/Stabl 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cd6/11471562/2101b5975451/41587_2023_2033_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验