Lu Jingru, Donnecke Sofia, Paci Irina, Leitch David C
Department of Chemistry, University of Victoria 3800 Finnerty Rd Victoria BC V8P 5C2 Canada
Chem Sci. 2022 Feb 28;13(12):3477-3488. doi: 10.1039/d2sc00174h. eCollection 2022 Mar 24.
Making accurate, quantitative predictions of chemical reactivity based on molecular structure is an unsolved problem in chemical synthesis, particularly for complex molecules. We report an approach to reactivity prediction for catalytic reactions based on quantitative structure-reactivity models for a key step common to many catalytic mechanisms. We demonstrate this approach with a mechanistically based model for the oxidative addition of (hetero)aryl electrophiles to palladium(0), which is a key step in myriad catalytic processes. This model links simple molecular descriptors to relative rates of oxidative addition for 79 substrates, including chloride, bromide and triflate leaving groups. Because oxidative addition often controls the rate and/or selectivity of palladium-catalyzed reactions, this model can be used to make quantitative predictions about catalytic reaction outcomes. Demonstrated applications include a multivariate linear model for the initial rate of Sonogashira coupling reactions, and successful site-selectivity predictions for Suzuki, Buchwald-Hartwig, and Stille reactions of multihalogenated substrates relevant to the synthesis of pharmaceuticals and natural products.
基于分子结构对化学反应活性进行准确的定量预测是化学合成中一个尚未解决的问题,对于复杂分子尤其如此。我们报告了一种基于许多催化机制共有的关键步骤的定量结构-反应活性模型来预测催化反应活性的方法。我们用一个基于机理的模型来证明这种方法,该模型用于(杂)芳基亲电试剂与钯(0)的氧化加成反应,这是众多催化过程中的关键步骤。该模型将简单的分子描述符与79种底物(包括氯、溴和三氟甲磺酸酯离去基团)的氧化加成相对速率联系起来。由于氧化加成通常控制钯催化反应的速率和/或选择性,因此该模型可用于对催化反应结果进行定量预测。已证明的应用包括用于Sonogashira偶联反应初始速率的多元线性模型,以及对与药物和天然产物合成相关的多卤代底物的铃木反应、布赫瓦尔德-哈特维希反应和施蒂勒反应成功进行位点选择性预测。