Interdisciplinary School of Scientific Computing and Department of Chemistry, Savitribai Phule University, Pune 411007, India.
Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, India.
Molecules. 2021 May 29;26(11):3289. doi: 10.3390/molecules26113289.
Following the pioneering investigations of Bader on the topology of molecular electron density, the topology analysis of its sister field viz. molecular electrostatic potential (MESP) was taken up by the authors' groups. Through these studies, MESP topology emerged as a powerful tool for exploring molecular bonding and reactivity patterns. The MESP topology features are mapped in terms of its critical points (CPs), such as bond critical points (BCPs), while the minima identify electron-rich locations, such as lone pairs and π-bonds. The gradient paths of MESP vividly bring out the atoms-in-molecule picture of neutral molecules and anions. The MESP-based characterization of a molecule in terms of electron-rich and -deficient regions provides a robust prediction about its interaction with other molecules. This leads to a clear picture of molecular aggregation, hydrogen bonding, lone pair-π interactions, π-conjugation, aromaticity and reaction mechanisms. This review summarizes the contributions of the authors' groups over the last three decades and those of the other active groups towards understanding chemical bonding, molecular recognition, and reactivity through topology analysis of MESP.
继 Bader 对分子电子密度拓扑的开创性研究之后,作者所在的团队开始对其姊妹领域——分子静电势(MESP)的拓扑分析展开研究。通过这些研究,MESP 拓扑成为探索分子键合和反应性模式的有力工具。MESP 拓扑特征通过其临界点(CPs)来映射,如键临界点(BCPs),而极小值则确定电子富区,如孤对和π键。MESP 的梯度路径生动地描绘出中性分子和阴离子的分子内原子图像。基于 MESP 的分子富电子和缺电子区域的特征化提供了对其与其他分子相互作用的稳健预测。这使得分子聚集、氢键、孤对-π 相互作用、π 共轭、芳香性和反应机制的图像变得清晰。本综述总结了作者所在团队在过去三十年中的贡献,以及其他活跃团队通过 MESP 的拓扑分析在理解化学键、分子识别和反应性方面的贡献。