Suppr超能文献

组蛋白去乙酰化酶8(HDAC8)抑制剂作为治疗急性肾损伤药物研发起点的验证

Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury.

作者信息

Long Keith, Vaughn Zoe, McDaniels Michael David, Joyasawal Sipak, Przepiorski Aneta, Parasky Emily, Sander Veronika, Close David, Johnston Paul A, Davidson Alan J, de Caestecker Mark, Hukriede Neil A, Huryn Donna M

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy and Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand 1010.

出版信息

ACS Pharmacol Transl Sci. 2022 Mar 16;5(4):207-215. doi: 10.1021/acsptsci.1c00243. eCollection 2022 Apr 8.

Abstract

Acute kidney injury (AKI), a sudden loss of kidney function, is a common and serious condition for which there are no approved specific therapies. While there are multiple approaches to treat the underlying causes of AKI, no targets have been clinically validated. Here, we assessed a series of potent, selective competitive inhibitors of histone deacetylase 8 (HDAC8), a promising therapeutic target in an AKI setting. Using biochemical assays, zebrafish AKI phenotypic assays, and human kidney organoid assays, we show that selective HDAC8 inhibitors can lead to efficacy in increasingly stringent models. One of these, PCI-34051, was efficacious in a rodent model of AKI, further supporting the potential for HDAC8 inhibitors and, in particular, this scaffold as a therapeutic approach to AKI.

摘要

急性肾损伤(AKI)是一种肾功能的突然丧失,是一种常见且严重的病症,目前尚无经批准的特异性治疗方法。虽然有多种方法可治疗AKI的潜在病因,但尚无靶点得到临床验证。在此,我们评估了一系列组蛋白去乙酰化酶8(HDAC8)的强效、选择性竞争性抑制剂,HDAC8是AKI治疗中一个有前景的靶点。通过生化分析、斑马鱼AKI表型分析和人类肾类器官分析,我们表明选择性HDAC8抑制剂在越来越严格的模型中可产生疗效。其中一种抑制剂PCI-34051在AKI的啮齿动物模型中有效,进一步支持了HDAC8抑制剂,特别是这种骨架作为AKI治疗方法的潜力。

相似文献

1
Validation of HDAC8 Inhibitors as Drug Discovery Starting Points to Treat Acute Kidney Injury.
ACS Pharmacol Transl Sci. 2022 Mar 16;5(4):207-215. doi: 10.1021/acsptsci.1c00243. eCollection 2022 Apr 8.
3
Discovery of meta-sulfamoyl N-hydroxybenzamides as HDAC8 selective inhibitors.
Eur J Med Chem. 2018 Apr 25;150:282-291. doi: 10.1016/j.ejmech.2018.03.002. Epub 2018 Mar 6.
5
Design, Synthesis, and Biological Evaluation of Tetrahydroisoquinoline-Based Histone Deacetylase 8 Selective Inhibitors.
ACS Med Chem Lett. 2017 Aug 1;8(8):824-829. doi: 10.1021/acsmedchemlett.7b00126. eCollection 2017 Aug 10.
6
A comparative quantitative structural assessment of benzothiazine-derived HDAC8 inhibitors by predictive ligand-based drug designing approaches.
SAR QSAR Environ Res. 2022 Dec;33(12):987-1011. doi: 10.1080/1062936X.2022.2155241. Epub 2022 Dec 19.
7
Delayed treatment with PTBA analogs reduces postinjury renal fibrosis after kidney injury.
Am J Physiol Renal Physiol. 2016 Apr 15;310(8):F705-F716. doi: 10.1152/ajprenal.00503.2015. Epub 2015 Dec 9.
8
Design, synthesis, and biological activity of NCC149 derivatives as histone deacetylase 8-selective inhibitors.
ChemMedChem. 2014 Mar;9(3):657-64. doi: 10.1002/cmdc.201300414. Epub 2014 Jan 8.
9
A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors.
Int J Mol Sci. 2022 Sep 2;23(17):10014. doi: 10.3390/ijms231710014.
10
Progress in the development of animal models of acute kidney injury and its impact on drug discovery.
Expert Opin Drug Discov. 2013 Jul;8(7):879-95. doi: 10.1517/17460441.2013.793667. Epub 2013 Apr 29.

引用本文的文献

1
Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo.
Anal Biochem. 2025 Feb;697:115712. doi: 10.1016/j.ab.2024.115712. Epub 2024 Nov 9.
3
Replacement of the hydroxamic acid group in the selective HDAC8 inhibitor PCI-34051.
Bioorg Med Chem Lett. 2024 Aug 1;108:129810. doi: 10.1016/j.bmcl.2024.129810. Epub 2024 May 22.
4
A comprehensive review on 3D tissue models: Biofabrication technologies and preclinical applications.
Biomaterials. 2024 Jan;304:122408. doi: 10.1016/j.biomaterials.2023.122408. Epub 2023 Nov 27.
5
Virtual Special Issue: Epigenetics 2022.
ACS Pharmacol Transl Sci. 2022 Sep 9;5(10):829-834. doi: 10.1021/acsptsci.2c00169. eCollection 2022 Oct 14.
6
Virtual Special Issue: Epigenetics 2022.
ACS Med Chem Lett. 2022 Oct 13;13(10):1524-1529. doi: 10.1021/acsmedchemlett.2c00393.
7
Pathological Role of HDAC8: Cancer and Beyond.
Cells. 2022 Oct 9;11(19):3161. doi: 10.3390/cells11193161.
8
A Therapeutic Perspective of HDAC8 in Different Diseases: An Overview of Selective Inhibitors.
Int J Mol Sci. 2022 Sep 2;23(17):10014. doi: 10.3390/ijms231710014.

本文引用的文献

1
Acute kidney injury.
Nat Rev Dis Primers. 2021 Jul 15;7(1):52. doi: 10.1038/s41572-021-00284-z.
3
Long-term consequences of acute kidney injury: a narrative review.
Clin Kidney J. 2020 Nov 19;14(3):789-804. doi: 10.1093/ckj/sfaa177. eCollection 2021 Mar.
4
COVID-19-associated acute kidney injury: consensus report of the 25th Acute Disease Quality Initiative (ADQI) Workgroup.
Nat Rev Nephrol. 2020 Dec;16(12):747-764. doi: 10.1038/s41581-020-00356-5. Epub 2020 Oct 15.
5
Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight.
J Med Chem. 2020 Nov 12;63(21):12460-12484. doi: 10.1021/acs.jmedchem.0c00830. Epub 2020 Jul 16.
6
Histone Deacetylases in Kidney Physiology and Acute Kidney Injury.
Semin Nephrol. 2020 Mar;40(2):138-147. doi: 10.1016/j.semnephrol.2020.01.005.
7
Identification of histone deacetylase 8 as a novel therapeutic target for renal fibrosis.
FASEB J. 2020 Jun;34(6):7295-7310. doi: 10.1096/fj.201903254R. Epub 2020 Apr 12.
8
Long-term outcomes in mouse models of ischemia-reperfusion-induced acute kidney injury.
Am J Physiol Renal Physiol. 2019 Oct 1;317(4):F1068-F1080. doi: 10.1152/ajprenal.00305.2019. Epub 2019 Aug 14.
9
Do Zebrafish Obey Lipinski Rules?
ACS Med Chem Lett. 2019 Apr 24;10(6):1002-1006. doi: 10.1021/acsmedchemlett.9b00063. eCollection 2019 Jun 13.
10
Drugs in Development for Acute Kidney Injury.
Drugs. 2019 Jun;79(8):811-821. doi: 10.1007/s40265-019-01119-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验