Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, USA.
Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.
J Comp Neurol. 2022 Aug;530(12):2176-2187. doi: 10.1002/cne.25326. Epub 2022 Apr 17.
Loss of retinal ganglion cells (RGCs) underlies several forms of retinal disease including glaucomatous optic neuropathy, a leading cause of irreversible blindness. Several rare genetic disorders associated with cilia dysfunction have retinal degeneration as a clinical hallmark. Much of the focus of ciliopathy associated blindness is on the connecting cilium of photoreceptors; however, RGCs also possess primary cilia. It is unclear what roles RGC cilia play, what proteins and signaling machinery localize to RGC cilia, or how RGC cilia are differentiated across the subtypes of RGCs. To better understand these questions, we assessed the presence or absence of a prototypical cilia marker Arl13b and a widely distributed neuronal cilia marker AC3 in different subtypes of mouse RGCs. Interestingly, not all RGC subtype cilia are the same and there are significant differences even among these standard cilia markers. Alpha-RGCs positive for osteopontin, calretinin, and SMI32 primarily possess AC3-positive cilia. Directionally selective RGCs that are CART positive or Trhr positive localize either Arl13b or AC3, respectively, in cilia. Intrinsically photosensitive RGCs differentially localize Arl13b and AC3 based on melanopsin expression. Taken together, we characterized the localization of gold standard cilia markers in different subtypes of RGCs and conclude that cilia within RGC subtypes may be differentially organized. Future studies aimed at understanding RGC cilia function will require a fundamental ability to observe the cilia across subtypes as their signaling protein composition is elucidated. A comprehensive understanding of RGC cilia may reveal opportunities to understanding how their dysfunction leads to retinal degeneration.
视网膜神经节细胞 (RGC) 的丢失是包括青光眼视神经病变在内的几种视网膜疾病的基础,青光眼视神经病变是导致不可逆转失明的主要原因之一。几种与纤毛功能障碍相关的罕见遗传疾病都有视网膜变性作为临床标志。纤毛病相关失明的大部分焦点都集中在感光细胞的连接纤毛上;然而,RGC 也拥有初级纤毛。目前还不清楚 RGC 纤毛的作用是什么,哪些蛋白质和信号机制定位于 RGC 纤毛,或者 RGC 纤毛在不同的 RGC 亚型之间是如何分化的。为了更好地理解这些问题,我们评估了不同类型的小鼠 RGC 中典型纤毛标记物 Arl13b 和广泛分布的神经元纤毛标记物 AC3 的存在或缺失。有趣的是,并非所有 RGC 亚型的纤毛都是相同的,即使在这些标准的纤毛标记物中,也存在显著差异。阳性表达骨桥蛋白、钙结合蛋白和 SMI32 的α-RGC 主要拥有 AC3 阳性纤毛。阳性表达 CART 或 Trhr 的方向选择性 RGC 分别在纤毛中定位 Arl13b 或 AC3。光感受器固有敏感的 RGC 根据黑视素的表达差异定位 Arl13b 和 AC3。总之,我们描述了不同类型的 RGC 中黄金标准纤毛标记物的定位,并得出结论,RGC 亚型内的纤毛可能具有不同的组织方式。未来旨在理解 RGC 纤毛功能的研究将需要一种基本的能力,即能够观察不同亚型的纤毛,因为它们的信号蛋白组成正在被阐明。对 RGC 纤毛的全面理解可能会揭示了解它们的功能障碍如何导致视网膜变性的机会。