Suppr超能文献

基于置换随机森林的化学交换饱和转移磁共振成像的频率重要性分析。

Frequency importance analysis for chemical exchange saturation transfer magnetic resonance imaging using permuted random forest.

机构信息

Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China.

Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China.

出版信息

NMR Biomed. 2023 Jun;36(6):e4744. doi: 10.1002/nbm.4744. Epub 2022 May 3.

Abstract

Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) is a promising molecular imaging tool that allows sensitive detection of endogenous metabolic changes. However, because the CEST spectrum does not display a clear peak like MR spectroscopy, its signal interpretation is challenging, especially under 3-T field strength or with a large saturation B . Herein, as an alternative to conventional Z-spectral fitting approaches, a permuted random forest (PRF) method is developed to determine featured saturation frequencies for lesion identification, so-called CEST frequency importance analysis. Briefly, voxels in the CEST dataset were labeled as lesion and control according to multicontrast MR images. Then, by considering each voxel's saturation signal series as a sample, a permutation importance algorithm was employed to rank the contribution of saturation frequency offsets in the differentiation of lesion and normal tissue. Simulations demonstrated that PRF could correctly determine the frequency offsets (3.5 or -3.5 ppm) for classifying two groups of Z-spectra, under a range of B , B conditions and sample sizes. For ischemic rat brains, PRF only displayed high feature importance around amide frequency at 2 h postischemia, reflecting that the pH changes occurred at an early stage. By contrast, the data acquired at 24 h postischemia exhibited high feature importance at multiple frequencies (amide, water, and lipids), which suggested the complex tissue changes that occur during the later stages. Finally, PRF was assessed using 3-T CEST data from four brain tumor patients. By defining the tumor region on amide proton transfer-weighted images, PRF analysis identified different CEST frequency importance for two types of tumors (glioblastoma and metastatic tumor) (p < 0.05, with each image slice as a subject). In conclusion, the PRF method was able to rank and interpret the contribution of all acquired saturation offsets to lesion identification; this may facilitate CEST analysis in clinical applications, and open up new doors for comprehensive CEST analysis tools other than model-based approaches.

摘要

化学交换饱和传递磁共振成像(CEST MRI)是一种很有前途的分子成像工具,可用于敏感检测内源性代谢变化。然而,由于 CEST 谱不像磁共振波谱那样显示出清晰的峰,因此其信号解释具有挑战性,尤其是在 3-T 场强或大饱和 B 下。在此,作为传统 Z 谱拟合方法的替代方法,开发了置换随机森林(PRF)方法来确定用于病变识别的特征饱和频率,即所谓的 CEST 频率重要性分析。简而言之,根据多对比度 MR 图像,将 CEST 数据集的体素标记为病变和对照。然后,通过考虑每个体素的饱和信号序列作为一个样本,采用置换重要性算法对饱和频率偏移在病变和正常组织区分中的贡献进行排序。模拟表明,PRF 可以正确确定两组 Z 谱的频率偏移(3.5 或-3.5 ppm),适用于一系列 B 、 B 条件和样本量。对于缺血性大鼠脑,PRF 仅在缺血后 2 小时显示酰胺频率周围的高特征重要性,反映出早期发生 pH 变化。相比之下,缺血后 24 小时采集的数据在多个频率(酰胺、水和脂质)上显示出高特征重要性,这表明在后期发生了复杂的组织变化。最后,使用来自 4 名脑肿瘤患者的 3-T CEST 数据评估了 PRF。通过在酰胺质子转移加权图像上定义肿瘤区域,PRF 分析确定了两种类型的肿瘤(胶质母细胞瘤和转移性肿瘤)的不同 CEST 频率重要性(p < 0.05,每个图像切片作为一个对象)。总之,PRF 方法能够对所有采集的饱和偏移对病变识别的贡献进行排序和解释;这可能有助于 CEST 分析在临床应用中的应用,并为基于模型的方法以外的全面 CEST 分析工具开辟新的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验