The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA.
Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.
Neuroimage. 2018 Mar;168:222-241. doi: 10.1016/j.neuroimage.2017.04.045. Epub 2017 Apr 21.
Magnetization Transfer Contrast (MTC) and Chemical Exchange Saturation Transfer (CEST) experiments measure the transfer of magnetization from molecular protons to the solvent water protons, an effect that becomes apparent as an MRI signal loss ("saturation"). This allows molecular information to be accessed with the enhanced sensitivity of MRI. In analogy to Magnetic Resonance Spectroscopy (MRS), these saturation data are presented as a function of the chemical shift of participating proton groups, e.g. OH, NH, NH, which is called a Z-spectrum. In tissue, these Z-spectra contain the convolution of multiple saturation transfer effects, including nuclear Overhauser enhancements (NOEs) and chemical exchange contributions from protons in semi-solid and mobile macromolecules or tissue metabolites. As a consequence, their appearance depends on the magnetic field strength (B) and pulse sequence parameters such as B strength, pulse shape and length, and interpulse delay, which presents a major problem for quantification and reproducibility of MTC and CEST effects. The use of higher B can bring several advantages. In addition to higher detection sensitivity (signal-to-noise ratio, SNR), both MTC and CEST studies benefit from longer water T allowing the saturation transferred to water to be retained longer. While MTC studies are non-specific at any field strength, CEST specificity is expected to increase at higher field because of a larger chemical shift dispersion of the resonances of interest (similar to MRS). In addition, shifting to a slower exchange regime at higher B facilitates improved detection of the guanidinium protons of creatine and the inherently broad resonances of the amine protons in glutamate and the hydroxyl protons in myoinositol, glycogen, and glucosaminoglycans. Finally, due to the higher mobility of the contributing protons in CEST versus MTC, many new pulse sequences can be designed to more specifically edit for CEST signals and to remove MTC contributions.
磁化转移对比(MTC)和化学交换饱和转移(CEST)实验测量来自分子质子到溶剂水质子的磁化转移,这种效应表现为 MRI 信号损失(“饱和”)。这使得可以利用 MRI 的增强灵敏度来获取分子信息。与磁共振波谱(MRS)类似,这些饱和数据被表示为参与质子基团(例如 OH、NH、NH)的化学位移的函数,这称为 Z 谱。在组织中,这些 Z 谱包含多个饱和转移效应的卷积,包括核奥弗豪瑟增强(NOE)和来自半固态和可移动大分子或组织代谢物中的质子的化学交换贡献。因此,它们的出现取决于磁场强度(B)和脉冲序列参数,例如 B 强度、脉冲形状和长度以及脉冲间延迟,这对 MTC 和 CEST 效应的定量和重现性构成了重大问题。使用更高的 B 可以带来几个优势。除了更高的检测灵敏度(信噪比,SNR)之外,MTC 和 CEST 研究都受益于更长的水 T,从而使饱和转移到水中的水保留时间更长。虽然在任何磁场强度下 MTC 研究都是非特异性的,但 CEST 特异性预计会随着磁场的增加而增加,因为感兴趣的共振的化学位移色散更大(类似于 MRS)。此外,在更高的 B 下转移到较慢的交换状态有助于更好地检测肌酸的胍质子以及谷氨酸中胺质子和肌醇、糖原和糖胺聚糖中羟基质子的固有宽共振。最后,由于在 CEST 中贡献质子的迁移率高于 MTC,因此可以设计许多新的脉冲序列,以更具体地编辑 CEST 信号并去除 MTC 贡献。