Suppr超能文献

医学研究中的真实世界数据与数据科学:现状与未来。

Real world data and data science in medical research: present and future.

作者信息

Togo Kanae, Yonemoto Naohiro

机构信息

Health and Value, Pfizer Japan Inc., Tokyo, Japan.

出版信息

Jpn J Stat Data Sci. 2022;5(2):769-781. doi: 10.1007/s42081-022-00156-0. Epub 2022 Apr 13.

Abstract

Real world data (RWD) are generating greater interest in recent times despite being not new. There are various purposes of the RWD analytics in medical research as follows: effectiveness and safety of medical treatment, epidemiology such as incidence and prevalence of disease, burden of disease, quality of life and activity of daily living, medical costs, etc. The RWD research in medicine is a mixture of digital transformation, statistics or data science, public health, and regulatory science. Most of the articles describing the RWD or real-world evidence (RWE) in medical research cover only a portion of these specializations, which might lead to an incomplete understanding of the RWD. This article summarizes the overview and challenges of the RWD analysis in medical fields from methodological perspectives. As the first step for the RWD analysis, data source of the RWD should be comprehended. The progress of the RWD is closely related to the digitization, especially of medical administrative data and medical records. Second, the selection of appropriate statistical and epidemiological methods is highly critical for an RWD analysis than those for randomized clinical trials. This is because it contains greater varieties of bias, which should be controlled by balancing the underlying risk between treatment groups. Last, the future of the RWD is discussed in terms of overcoming limited data by proxy confounders, using unstructured text data, linking of multiple databases, using the RWD or RWE for a regulatory purpose, and evaluating values and new aspects in medical research brought by the RWD.

摘要

现实世界数据(RWD)尽管并非新鲜事物,但近年来却引发了越来越多的关注。医学研究中RWD分析有多种目的,如下所示:医疗治疗的有效性和安全性、疾病的发病率和患病率等流行病学情况、疾病负担、生活质量和日常生活活动、医疗成本等。医学领域的RWD研究是数字转型、统计学或数据科学、公共卫生和监管科学的混合体。大多数描述医学研究中RWD或真实世界证据(RWE)的文章只涵盖了这些专业领域的一部分,这可能导致对RWD的理解不完整。本文从方法学角度总结了医学领域RWD分析的概述和挑战。作为RWD分析的第一步,应了解RWD的数据源。RWD的进展与数字化密切相关,尤其是医疗管理数据和医疗记录的数字化。其次,对于RWD分析而言,选择合适的统计和流行病学方法比随机临床试验更为关键。这是因为它包含更多种类的偏差,需要通过平衡治疗组之间的潜在风险来加以控制。最后,从通过代理混杂因素克服有限数据、使用非结构化文本数据、链接多个数据库、将RWD或RWE用于监管目的以及评估RWD在医学研究中带来的价值和新方面等角度讨论了RWD的未来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f490/9007054/b7b1ad98f0fa/42081_2022_156_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验