Suppr超能文献

用于真实世界数据中生成真实世界证据的数据科学方法。

Data Science Methods for Real-World Evidence Generation in Real-World Data.

作者信息

Liu Fang

机构信息

Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana, USA; email:

出版信息

Annu Rev Biomed Data Sci. 2024 Aug;7(1):201-224. doi: 10.1146/annurev-biodatasci-102423-113220. Epub 2024 Jul 24.

Abstract

In the healthcare landscape, data science (DS) methods have emerged as indispensable tools to harness real-world data (RWD) from various data sources such as electronic health records, claim and registry data, and data gathered from digital health technologies. Real-world evidence (RWE) generated from RWD empowers researchers, clinicians, and policymakers with a more comprehensive understanding of real-world patient outcomes. Nevertheless, persistent challenges in RWD (e.g., messiness, voluminousness, heterogeneity, multimodality) and a growing awareness of the need for trustworthy and reliable RWE demand innovative, robust, and valid DS methods for analyzing RWD. In this article, I review some common current DS methods for extracting RWE and valuable insights from complex and diverse RWD. This article encompasses the entire RWE-generation pipeline, from study design with RWD to data preprocessing, exploratory analysis, methods for analyzing RWD, and trustworthiness and reliability guarantees, along with data ethics considerations and open-source tools. This review, tailored for an audience that may not be experts in DS, aspires to offer a systematic review of DS methods and assists readers in selecting suitable DS methods and enhancing the process of RWE generation for addressing their specific challenges.

摘要

在医疗保健领域,数据科学(DS)方法已成为利用来自各种数据源(如电子健康记录、理赔和登记数据以及从数字健康技术收集的数据)的真实世界数据(RWD)的不可或缺的工具。从RWD生成的真实世界证据(RWE)使研究人员、临床医生和政策制定者能够更全面地了解真实世界的患者结局。然而,RWD中存在的持续挑战(如杂乱、量大、异质性、多模态性)以及对可信可靠的RWE的需求日益增加,这就需要创新、强大且有效的DS方法来分析RWD。在本文中,我回顾了一些当前常见的用于从复杂多样的RWD中提取RWE和有价值见解的DS方法。本文涵盖了整个RWE生成流程,从使用RWD进行研究设计到数据预处理、探索性分析、分析RWD的方法以及可信度和可靠性保证,同时还涉及数据伦理考量和开源工具。这篇为可能并非DS专家的读者量身定制的综述,旨在对DS方法进行系统回顾,并帮助读者选择合适的DS方法,以及改进RWE生成过程以应对他们的特定挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验