Suppr超能文献

在量子化学反应路径寻找中利用算法搜索。

Leveraging algorithmic search in quantum chemical reaction path finding.

作者信息

Nakao Atsuyuki, Harabuchi Yu, Maeda Satoshi, Tsuda Koji

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 2778561, Japan.

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan.

出版信息

Phys Chem Chem Phys. 2022 May 4;24(17):10305-10310. doi: 10.1039/d2cp01079h.

Abstract

Reaction path finding methods construct a graph connecting reactants and products in a quantum chemical energy landscape. They are useful in elucidating various reactions and provide footsteps for designing new reactions. Their enormous computational cost, however, limits their application to relatively simple reactions. This paper engages in accelerating reaction path finding by introducing the principles of algorithmic search. A new method called RRT/SC-AFIR is devised by combining rapidly exploring random tree (RRT) and single component artificial force induced reaction (SC-AFIR). Using 96 cores, our method succeeded in constructing a reaction graph for Fritsch-Buttenberg-Wiechell rearrangement within a time limit of 3 days, while the conventional methods could not. Our results illustrate that the algorithm theory provides refreshing and beneficial viewpoints on quantum chemical methodologies.

摘要

反应路径寻找方法在量子化学能量景观中构建连接反应物和产物的图。它们在阐明各种反应方面很有用,并为设计新反应提供线索。然而,其巨大的计算成本限制了它们在相对简单反应中的应用。本文通过引入算法搜索原理致力于加速反应路径寻找。通过结合快速探索随机树(RRT)和单组分人工力诱导反应(SC-AFIR)设计了一种名为RRT/SC-AFIR的新方法。使用96个核心,我们的方法成功地在3天的时间限制内构建了Fritsch-Buttenberg-Wiechell重排反应图,而传统方法则无法做到。我们的结果表明,算法理论为量子化学方法提供了新颖且有益的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验