Hasegawa Taisuke, Hagiwara Satoshi, Otani Minoru, Maeda Satoshi
Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo 060-0810, Japan.
Center for Computational Sciences, University of Tsukuba, 1-1-1 Tenno-dai, Tsukuba 305-8577, Japan.
J Phys Chem Lett. 2023 Oct 5;14(39):8796-8804. doi: 10.1021/acs.jpclett.3c02233. Epub 2023 Sep 25.
We present a combined simulation method of single-component artificial force induced reaction (SC-AFIR) and effective screening medium combined with the reference interaction site model (ESM-RISM), termed SC-AFIR+ESM-RISM. SC-AFIR automatically and systematically explores the chemical reaction pathway, and ESM-RISM directly simulates the precise electronic structure at the solid-liquid interface. Hence, SC-AFIR+ESM-RISM enables us to explore reliable reaction pathways at the solid-liquid interface. We applied it to explore the dissociation pathway of an HO molecule at the Cu(111)/water interface. The reaction path networks of the whole reaction and the minimum energy paths from HO to H + O depend on the interfacial environment. The qualitative difference in the energy diagrams and the resulting change in the kinematically favored dissociation pathway upon changing the solvation environments are discussed. We believe that SC-AFIR+ESM-RISM will be a powerful tool to reveal the details of chemical reactions in surface catalysis and electrochemistry.
我们提出了一种单组分人工力诱导反应(SC-AFIR)与有效筛选介质相结合,并与参考相互作用位点模型(ESM-RISM)相结合的联合模拟方法,称为SC-AFIR+ESM-RISM。SC-AFIR能自动且系统地探索化学反应路径,而ESM-RISM则直接模拟固液界面处的精确电子结构。因此,SC-AFIR+ESM-RISM使我们能够探索固液界面处可靠的反应路径。我们将其应用于探索HO分子在Cu(111)/水界面的解离路径。整个反应的反应路径网络以及从HO到H + O的最小能量路径取决于界面环境。讨论了改变溶剂化环境时能量图的定性差异以及由此导致的动力学上有利的解离路径的变化。我们相信,SC-AFIR+ESM-RISM将成为揭示表面催化和电化学中化学反应细节的有力工具。