Patel Alkesh B, Vaghasiya Jayraj V, Chauhan Payal, Sumesh C K, Patel Vikas, Soni Saurabh S, Patel Kireetkumar D, Garg Parveen, Solanki Gunvant K, Pathak Vivek M
Department of Physics, Sardar Patel University, Shahid Chowk, Vallabh Vidyanagar, Anand 388 120, Gujarat, India.
Deparment of Paramedical Science, Charotar Institute of Paramedical Sciences, CHARUSAT Campus, Highway 139, Off. Nadiad-Petlad Road, Changa 388421, Gujarat, India.
Nanoscale. 2022 May 5;14(17):6636-6647. doi: 10.1039/d2nr00632d.
Two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructure is a new age strategy to achieve high electrocatalytic activity and ion storage capacity. The less complex and cost-effective applicability of the large-area TMDC heterostructure (HS) for energy applications require more research. Herein, we report the MoSe@WSe nanohybrid HS electrocatalyst prepared using liquid exfoliated nanocrystals, followed by direct electrophoretic deposition (EPD). The improved catalytic activity is attributed to the exposure of catalytic active sites on the edge of nanocrystals after liquid exfoliation and the synergistic effect arises at HS interfaces between the MoSe and WSe nanocrystals. As predicted, the HS catalyst achieves a lower overpotential of 158 mV, a smaller Tafel slope of 46 mV dec for a current density of 10 mA cm, and is stable for a long time. The flexible symmetric supercapacitor (FSSC) based on the HS catalyst demonstrates the excellent specific capacitance () of 401 F g at 1 A g, 97.20% capacitance retention after 5000 cycles and high flexible stability over 1000 bending cycles. This work presents a less complex and solution-processed efficient catalyst for future electrochemical energy applications.
二维(2D)过渡金属二硫属化物(TMDC)异质结构是实现高电催化活性和离子存储容量的新时代策略。大面积TMDC异质结构(HS)在能源应用中较简单且具有成本效益的适用性需要更多研究。在此,我们报道了使用液相剥离纳米晶体,随后进行直接电泳沉积(EPD)制备的MoSe@WSe纳米杂化HS电催化剂。催化活性的提高归因于液相剥离后纳米晶体边缘催化活性位点的暴露以及MoSe和WSe纳米晶体之间的HS界面产生的协同效应。如预期的那样,HS催化剂在电流密度为10 mA cm时实现了158 mV的较低过电位、46 mV dec的较小塔菲尔斜率,并且长时间稳定。基于HS催化剂的柔性对称超级电容器(FSSC)在1 A g时表现出401 F g的优异比电容()、5000次循环后97.20%的电容保持率以及超过1000次弯曲循环的高柔性稳定性。这项工作为未来的电化学能源应用提供了一种较简单且通过溶液处理的高效催化剂。