Department of Life Science Informatics, B-IT (Bonn-Aachen International Center for Information Technology), Chemical Biology and Medicinal Chemistry Program Unit, LIMES (Life and Medical Sciences Institute), Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany; email:
Current affiliation: Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland.
Annu Rev Biomed Data Sci. 2022 Aug 10;5:43-65. doi: 10.1146/annurev-biodatasci-122120-124216. Epub 2022 Apr 19.
In chemoinformatics and medicinal chemistry, machine learning has evolved into an important approach. In recent years, increasing computational resources and new deep learning algorithms have put machine learning onto a new level, addressing previously unmet challenges in pharmaceutical research. In silico approaches for compound activity predictions, de novo design, and reaction modeling have been further advanced by new algorithmic developments and the emergence of big data in the field. Herein, novel applications of machine learning and deep learning in chemoinformatics and medicinal chemistry are reviewed. Opportunities and challenges for new methods and applications are discussed, placing emphasis on proper baseline comparisons, robust validation methodologies, and new applicability domains.
在化学生信学和药物化学领域,机器学习已经发展成为一种重要的方法。近年来,不断增加的计算资源和新的深度学习算法使机器学习提升到了一个新的水平,解决了药物研究中以前无法解决的挑战。新算法的发展和该领域大数据的出现,进一步推动了化合物活性预测、从头设计和反应建模的计算方法。本文综述了机器学习和深度学习在化学生信学和药物化学中的新应用。讨论了新方法和应用的机遇和挑战,重点强调了适当的基线比较、稳健的验证方法和新的适用领域。