Lamens Alec, Bajorath Jürgen
Department of Life Science Informatics, B-IT, LIMES Program, Unit Chemical Biology and Medicinal Chemistry, Rheinische Friedrich-Wilhelms-Universität, Friedrich-Hirzebruch-Allee 5/6, D-53115 Bonn, Germany.
Molecules. 2023 Jul 24;28(14):5601. doi: 10.3390/molecules28145601.
Most machine learning (ML) models produce black box predictions that are difficult, if not impossible, to understand. In pharmaceutical research, black box predictions work against the acceptance of ML models for guiding experimental work. Hence, there is increasing interest in approaches for explainable ML, which is a part of explainable artificial intelligence (XAI), to better understand prediction outcomes. Herein, we have devised a test system for the rationalization of multiclass compound activity prediction models that combines two approaches from XAI for feature relevance or importance analysis, including counterfactuals (CFs) and Shapley additive explanations (SHAP). For compounds with different single- and dual-target activities, we identified small compound modifications that induce feature changes inverting class label predictions. In combination with feature mapping, CFs and SHAP value calculations provide chemically intuitive explanations for model decisions.
大多数机器学习(ML)模型会产生难以理解(甚至无法理解)的黑箱预测。在药物研究中,黑箱预测不利于ML模型被接受以指导实验工作。因此,人们对可解释的ML方法越来越感兴趣,可解释的ML是可解释人工智能(XAI)的一部分,旨在更好地理解预测结果。在此,我们设计了一个用于多类化合物活性预测模型合理化的测试系统,该系统结合了XAI中用于特征相关性或重要性分析的两种方法,包括反事实(CFs)和Shapley加法解释(SHAP)。对于具有不同单靶点和双靶点活性的化合物,我们确定了能引起特征变化从而反转类别标签预测的小分子化合物修饰。结合特征映射,CFs和SHAP值计算为模型决策提供了化学上直观的解释。