Suppr超能文献

用于快速测定小儿淋巴瘤全身代谢肿瘤负荷的卷积神经网络的验证

Validation of Convolutional Neural Networks for Fast Determination of Whole-Body Metabolic Tumor Burden in Pediatric Lymphoma.

作者信息

Etchebehere Elba, Andrade Rebeca, Camacho Mariana, Lima Mariana, Brink Anita, Cerci Juliano, Nadel Helen, Bal Chandrasekhar, Rangarajan Venkatesh, Pfluger Thomas, Kagna Olga, Alonso Omar, Begum Fatima K, Mir Kahkashan Bashir, Magboo Vincent Peter, Menezes Leon J, Paez Diana, Pascual Thomas Nb

机构信息

University of Campinas, Campinas, Brazil;

Medicina Nuclear de Campinas, Campinas, Brazil.

出版信息

J Nucl Med Technol. 2022 Sep;50(3):256-262. doi: 10.2967/jnmt.121.262900. Epub 2022 Apr 19.

Abstract

F-FDG PET/CT quantification of whole-body tumor burden in lymphoma is not routinely performed because of the lack of fast methods. Although the semiautomatic method is fast, it is not fast enough to quantify tumor burden in daily clinical practice. Our purpose was to evaluate the performance of convolutional neural network (CNN) software in localizing neoplastic lesions in whole-body F-FDG PET/CT images of pediatric lymphoma patients. The retrospective image dataset, derived from the data pool of the International Atomic Energy Agency (coordinated research project E12017), included 102 baseline staging F-FDG PET/CT studies of pediatric lymphoma patients (mean age, 11 y). The images were quantified to determine the whole-body tumor burden (whole-body metabolic tumor volume [wbMTV] and whole-body total lesion glycolysis [wbTLG]) using semiautomatic software and CNN-based software. Both were displayed as semiautomatic wbMTV and wbTLG and as CNN wbMTV and wbTLG. The intraclass correlation coefficient (ICC) was applied to evaluate concordance between the CNN-based software and the semiautomatic software. Twenty-six patients were excluded from the analysis because the software was unable to perform calculations for them. In the remaining 76 patients, CNN and semiautomatic wbMTV tumor burden metrics correlated strongly (ICC, 0.993; 95% CI, 0.989 - 0.996; < 0.0001), as did CNN and semiautomatic wbTLG (ICC, 0.999; 95% CI, 0.998-0.999; < 0.0001). However, the time spent calculating these metrics was significantly (<0.0001) less by CNN (mean, 19 s; range, 11-50 s) than by the semiautomatic method (mean, 21.6 min; range, 3.2-62.1 min), especially in patients with advanced disease. Determining whole-body tumor burden in pediatric lymphoma patients using CNN is fast and feasible in clinical practice.

摘要

由于缺乏快速方法,淋巴瘤全身肿瘤负荷的F-FDG PET/CT定量分析未常规开展。虽然半自动方法速度较快,但在日常临床实践中对肿瘤负荷进行定量分析时仍不够快。我们的目的是评估卷积神经网络(CNN)软件在定位小儿淋巴瘤患者全身F-FDG PET/CT图像中肿瘤性病变的性能。回顾性图像数据集来源于国际原子能机构的数据池(协调研究项目E12017),包括102例小儿淋巴瘤患者的基线分期F-FDG PET/CT研究(平均年龄11岁)。使用半自动软件和基于CNN的软件对图像进行定量分析,以确定全身肿瘤负荷(全身代谢肿瘤体积[wbMTV]和全身总病变糖酵解[wbTLG])。两者分别显示为半自动wbMTV和wbTLG以及CNN wbMTV和wbTLG。应用组内相关系数(ICC)评估基于CNN的软件和半自动软件之间的一致性。26例患者被排除在分析之外,因为软件无法为他们进行计算。在其余76例患者中,CNN和半自动wbMTV肿瘤负荷指标高度相关(ICC,0.993;95%CI,0.989 - 0.996;P<0.0001),CNN和半自动wbTLG也是如此(ICC,0.999;95%CI,0.998 - 0.999;P<0.0001)。然而,CNN计算这些指标的时间(平均19秒;范围11 - 50秒)比半自动方法(平均21.6分钟;范围3.2 - 62.1分钟)显著减少(P<0.0001),尤其是在晚期疾病患者中。在临床实践中,使用CNN确定小儿淋巴瘤患者的全身肿瘤负荷快速且可行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验