School of Dentistry and Medical Science, Charles Sturt University, Wagga Wagga, New South Wales, Australia.
Department of Radiology, Baylor College of Medicine, Houston, Texas, USA.
J Med Radiat Sci. 2023 Apr;70 Suppl 2(Suppl 2):77-88. doi: 10.1002/jmrs.626. Epub 2022 Oct 13.
Conventional radiomics in nuclear medicine involve hand-crafted and computer-assisted regions of interest. Recent developments in artificial intelligence (AI) have seen the emergence of AI-augmented segmentation and extraction of lower order traditional radiomic features. Deep learning (DL) affords the opportunity to extract abstract radiomic features directly from input tensors (images) without the need for segmentation. These fourth-order, high dimensional radiomics produce deep radiomics and are well suited to the data density associated with the molecular nature of hybrid imaging. Molecular radiomics and deep molecular radiomics provide insights beyond images and quantitation typical of semantic reporting. While the application of molecular radiomics using hand-crafted and computer-generated features is integrated into decision-making in nuclear medicine, the acceptance of deep molecular radiomics is less universal. This manuscript aims to provide an understanding of the language and principles associated with radiomics and deep radiomics in nuclear medicine.
核医学中的传统放射组学涉及手工制作和计算机辅助的感兴趣区域。人工智能(AI)的最新发展见证了人工智能增强的分割和提取较低阶传统放射组学特征的出现。深度学习(DL)提供了从输入张量(图像)中直接提取抽象放射组学特征的机会,而无需分割。这些四阶、高维放射组学产生了深度放射组学,非常适合与混合成像的分子性质相关的高密度数据。分子放射组学和深度分子放射组学提供了超越图像和定量的见解,这是语义报告的典型特征。虽然使用手工制作和计算机生成的特征的分子放射组学的应用已经整合到核医学的决策中,但深度分子放射组学的接受程度并不普遍。本文旨在提供对核医学中放射组学和深度放射组学相关语言和原理的理解。