Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
UCL Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK.
Nat Commun. 2022 Apr 19;13(1):2125. doi: 10.1038/s41467-022-29622-9.
Neurovascular coupling is a fundamental brain mechanism that regulates local cerebral blood flow (CBF) in response to changes in neuronal activity. Functional imaging techniques are commonly used to record these changes in CBF as a proxy of neuronal activity to study the human brain. However, the mechanisms of neurovascular coupling remain incompletely understood. Here we show in experimental animal models (laboratory rats and mice) that the neuronal activity-dependent increases in local CBF in the somatosensory cortex are prevented by saturation of the CO-sensitive vasodilatory brain mechanism with surplus of exogenous CO or disruption of brain CO/HCO transport by genetic knockdown of electrogenic sodium-bicarbonate cotransporter 1 (NBCe1) expression in astrocytes. A systematic review of the literature data shows that CO and increased neuronal activity recruit the same vasodilatory signaling pathways. These results and analysis suggest that CO mediates signaling between neurons and the cerebral vasculature to regulate brain blood flow in accord with changes in the neuronal activity.
神经血管耦合是一种基本的大脑机制,它可以根据神经元活动的变化来调节局部脑血流(CBF)。功能成像技术通常用于记录 CBF 的这些变化,作为神经元活动的替代物来研究人类大脑。然而,神经血管耦合的机制仍不完全清楚。在这里,我们在实验动物模型(实验室大鼠和小鼠)中表明,通过用外源性 CO 饱和 CO 敏感的血管舒张脑机制或通过基因敲低星形胶质细胞中的电活性钠-碳酸氢盐共转运蛋白 1(NBCe1)表达来破坏脑 CO/HCO 转运,可以防止躯体感觉皮层中局部 CBF 的神经元活动依赖性增加。对文献数据的系统综述表明,CO 和增加的神经元活动募集相同的血管舒张信号通路。这些结果和分析表明,CO 在神经元和脑血管之间传递信号,以根据神经元活动的变化来调节脑血流。