Tan Biyue, Ingvarsson Pär K
Umeå Plant Science Centre, Dep. of Ecology and Environmental Science, Umeå Univ., Umeå, SE-90187, Sweden.
Stora Enso AB, Nacka, SE-131 04, Sweden.
Plant Genome. 2022 Jun;15(2):e20208. doi: 10.1002/tpg2.20208. Epub 2022 Apr 20.
Genome-wide association studies (GWAS) is a powerful and widely used approach to decipher the genetic control of complex traits. Still, a significant challenge for dissecting quantitative traits in forest trees is statistical power. This study uses a population consisting of 1,123 samples derived from two successive generations of crosses between Eucalyptus grandis (W. Hill) and E. urophylla (S.T. Blake). All samples have been phenotyped for growth and wood property traits and genotyped using the EuChip60K chip, yielding 37,832 informative single nucleotide polymorphisms (SNPs). We use multi-locus GWAS models to assess additive and dominance effects to identify markers associated with growth and wood property traits in the eucalypt hybrids. Additive and dominance association models identified 78 and 82 significant SNPs across all traits, respectively, which captured between 39 and 86% of the genomic-based heritability. We also used SNPs identified from the GWAS and SNPs using less stringent significance thresholds to evaluate predictive abilities in a genomic selection framework. Genomic selection models based on the top 1% SNPs captured a substantially greater proportion of the genetic variance of traits compared with when we used all SNPs for model training. The prediction ability of estimated breeding values improved significantly for all traits when using either the top 1% SNPs or SNPs identified using a relaxed p value threshold (p < 10 ). This study also highlights the added value of incorporating dominance effects for identifying genomic regions controlling growth traits in trees. Moreover, integrating GWAS results into genomic selection method provides enhanced power relative to discrete associations for identifying genomic variation potentially valuable for forest tree breeding.
全基因组关联研究(GWAS)是一种强大且广泛应用的方法,用于解析复杂性状的遗传控制。然而,剖析林木数量性状面临的一个重大挑战是统计功效。本研究使用了一个由1123个样本组成的群体,这些样本来自巨桉(W. Hill)和尾叶桉(S.T. Blake)连续两代杂交。所有样本均已针对生长和木材性质性状进行了表型分析,并使用EuChip60K芯片进行了基因分型,产生了37832个信息丰富的单核苷酸多态性(SNP)。我们使用多位点GWAS模型来评估加性和显性效应,以鉴定与桉属杂交种生长和木材性质性状相关的标记。加性和显性关联模型分别在所有性状中鉴定出78个和82个显著的SNP,这些SNP捕获了基于基因组的遗传力的39%至86%。我们还使用从GWAS中鉴定出的SNP以及使用不太严格的显著性阈值的SNP,在基因组选择框架中评估预测能力。与使用所有SNP进行模型训练相比,基于前1% SNP的基因组选择模型捕获了性状遗传变异的更大比例。当使用前1% SNP或使用宽松p值阈值(p < 10)鉴定出的SNP时,所有性状的估计育种值的预测能力均显著提高。本研究还强调了纳入显性效应对于鉴定控制树木生长性状的基因组区域的附加价值。此外,将GWAS结果整合到基因组选择方法中,相对于离散关联,在识别对林木育种可能有价值的基因组变异方面提供了更强的功效。