Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183, Umeå, Sweden.
Skogforsk, 91821, Sävar, Sweden.
BMC Genomics. 2023 Mar 27;24(1):147. doi: 10.1186/s12864-023-09250-3.
Genomic prediction (GP) or genomic selection is a method to predict the accumulative effect of all quantitative trait loci (QTLs) in a population by estimating the realized genomic relationships between the individuals and by capturing the linkage disequilibrium between markers and QTLs. Thus, marker preselection is considered a promising method to capture Mendelian segregation effects. Using QTLs detected in a genome-wide association study (GWAS) may improve GP. Here, we performed GWAS and GP in a population with 904 clones from 32 full-sib families using a newly developed 50 k SNP Norway spruce array. Through GWAS we identified 41 SNPs associated with budburst stage (BB) and the largest effect association explained 5.1% of the phenotypic variation (PVE). For the other five traits such as growth and wood quality traits, only 2 - 13 associations were observed and the PVE of the strongest effects ranged from 1.2% to 2.0%. GP using approximately 100 preselected SNPs, based on the smallest p-values from GWAS showed the greatest predictive ability (PA) for the trait BB. For the other traits, a preselection of 2000-4000 SNPs, was found to offer the best model fit according to the Akaike information criterion being minimized. But PA-magnitudes from GP using such selections were still similar to that of GP using all markers. Analyses on both real-life and simulated data also showed that the inclusion of a large QTL SNP in the model as a fixed effect could improve PA and accuracy of GP provided that the PVE of the QTL was ≥ 2.5%.
基因组预测(GP)或基因组选择是一种通过估计个体之间实际的基因组关系并捕获标记与 QTL 之间的连锁不平衡来预测群体中所有数量性状位点(QTL)累积效应的方法。因此,标记预选被认为是捕获孟德尔分离效应的一种有前途的方法。使用在全基因组关联研究(GWAS)中检测到的 QTL 可能会提高 GP 的效果。在这里,我们使用新开发的 50k SNP 挪威云杉阵列,在由 32 个全同胞家系的 904 个克隆组成的群体中进行了 GWAS 和 GP。通过 GWAS,我们鉴定了与萌芽阶段(BB)相关的 41 个 SNP,最大效应关联解释了 5.1%的表型变异(PVE)。对于其他五个性状,如生长和木材质量性状,只观察到 2-13 个关联,最强效应对 PVE 的范围从 1.2%到 2.0%。使用大约 100 个基于 GWAS 中最小 p 值预选的 SNP 进行 GP 显示出对性状 BB 最大的预测能力(PA)。对于其他性状,根据最小化的 Akaike 信息准则,发现预选 2000-4000 个 SNP 可以提供最佳的模型拟合。但是,使用这种选择进行 GP 的 PA 幅度仍然与使用所有标记进行 GP 的 PA 幅度相似。对真实数据和模拟数据的分析还表明,在模型中包含一个大的 QTL SNP 作为固定效应可以提高 PA 和 GP 的准确性,前提是 QTL 的 PVE ≥2.5%。