Fraunhofer Institute for Molecular Biology and Applied Ecologygrid.418010.c (IME), Branch for Bioresources, Giessen, Germany.
Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany.
Microbiol Spectr. 2022 Jun 29;10(3):e0247921. doi: 10.1128/spectrum.02479-21. Epub 2022 Apr 20.
With progress in genome sequencing and data sharing, 1,000s of bacterial genomes are publicly available. Genome mining-using bioinformatics tools in terms of biosynthetic gene cluster (BGC) identification, analysis, and rating-has become a key technology to explore the capabilities for natural product (NP) biosynthesis. Comprehensively, analyzing the genetic potential of the phylum Bacteroidetes revealed as the most talented genus in terms of BGC abundance and diversity. Guided by the computational predictions, we conducted a metabolomics and bioactivity driven NP discovery program on 25 strains. High numbers of strain-specific metabolite buckets confirmed the upfront predicted biosynthetic potential and revealed a tremendous uncharted chemical space. Mining this data set, we isolated the new iron chelating nonribosomally synthesized cyclic tetradeca- and pentadecalipodepsipeptide antibiotics chitinopeptins with activity against , produced by DSM 22224 and KCTC 62435, respectively. The development of pipelines for anti-infectives to be applied in plant, animal, and human health management are dried up. However, the resistance development against compounds in use calls for new lead structures. To fill this gap and to enhance the probability of success for the discovery of new bioactive natural products, microbial taxa currently underinvestigated must be mined. This study investigates the potential within the bacterial phylum Bacteroidetes. A combination of omics-technologies revealed taxonomical hot spots for specialized metabolites. Genome- and metabolome-based analyses showed that the phylum covers a new chemical space compared with classic natural product producers. Members of the Bacteroidetes may thus present a promising bioresource for future screening and isolation campaigns.
随着基因组测序和数据共享的进展,数以千计的细菌基因组可供公开使用。基于生物合成基因簇 (BGC) 鉴定、分析和评估的基因组挖掘已成为探索天然产物 (NP) 生物合成能力的关键技术。综合分析拟杆菌门的遗传潜力表明,该门在 BGC 丰度和多样性方面是最有天赋的属。在计算预测的指导下,我们对 25 株菌进行了代谢组学和生物活性驱动的 NP 发现计划。大量菌株特异性代谢物桶证实了预先预测的生物合成潜力,并揭示了巨大的未开发化学空间。对这些数据进行挖掘,我们分离到了新的铁螯合非核糖体合成的十四烷和十五烷脂肽抗生素几丁质肽,对 和 具有活性,分别由 DSM 22224 和 KCTC 62435 产生。用于植物、动物和人类健康管理的抗感染药物开发管道已经枯竭。然而,对现有化合物的耐药性发展要求新的先导结构。为了填补这一空白,并提高发现新生物活性天然产物的成功率,必须挖掘目前研究不足的微生物类群。本研究调查了细菌门拟杆菌门的潜力。组学技术的组合揭示了特殊代谢物的分类热点。基于基因组和代谢组学的分析表明,与经典天然产物生产者相比,该门涵盖了一个新的化学空间。拟杆菌门的成员因此可能成为未来筛选和分离活动的有前途的生物资源。