Department of Cell and Development Biology (J.S., C.W.A., R.G., K.M.R., M.L.I.-A.), Northwestern University, Chicago.
Molecular Biology Institute (G.E.H., F.M.), University of California, Los Angeles.
Arterioscler Thromb Vasc Biol. 2022 Jun;42(6):732-742. doi: 10.1161/ATVBAHA.121.317172. Epub 2022 Apr 21.
Failure to close the ductus arteriosus, patent ductus arteriosus, accounts for 10% of all congenital heart defects. Despite significant advances in patent ductus arteriosus management, including pharmacological treatment targeting the prostaglandin pathway, a proportion of patients fail to respond and must undergo surgical intervention. Thus, further refinement of the cellular and molecular mechanisms that govern vascular remodeling of this vessel is required.
We performed single-cell RNA-sequencing of the ductus arteriosus in mouse embryos at E18.5 (embryonic day 18.5), and P0.5 (postnatal day 0.5), and P5 to identify transcriptional alterations that might be associated with remodeling. We further confirmed our findings using transgenic mouse models coupled with immunohistochemistry analysis.
The intermediate filament vimentin emerged as a candidate that might contribute to closure of the ductus arteriosus. Indeed, mice with genetic deletion of vimentin fail to complete vascular remodeling of the ductus arteriosus. To seek mechanisms, we turned to the RNA-sequencing data that indicated changes in Jagged1 with similar profile to vimentin and pointed to potential links with Notch. In fact, Notch3 signaling was impaired in vimentin null mice and vimentin null mice phenocopies patent ductus arteriosus in Jagged1 endothelial and smooth muscle deleted mice.
Through single-cell RNA-sequencing and by tracking closure of the ductus arteriosus in mice, we uncovered the unexpected contribution of vimentin in driving complete closure of the ductus arteriosus through a mechanism that includes deregulation of the Notch signaling pathway.
动脉导管未闭(PDA)占所有先天性心脏病的 10%。尽管在动脉导管未闭的治疗方面取得了重大进展,包括针对前列腺素途径的药物治疗,但仍有一部分患者对此治疗没有反应,必须进行手术干预。因此,需要进一步深入研究控制该血管重塑的细胞和分子机制。
我们对 E18.5(胚胎第 18.5 天)、P0.5(出生后第 0.5 天)和 P5 的小鼠胚胎动脉导管进行了单细胞 RNA 测序,以鉴定可能与重塑相关的转录变化。我们进一步使用转基因小鼠模型结合免疫组织化学分析来验证我们的发现。
中间丝波形蛋白成为可能有助于动脉导管闭合的候选物。事实上,波形蛋白基因缺失的小鼠未能完成动脉导管的血管重塑。为了寻找机制,我们研究了 RNA 测序数据,这些数据表明 Jagged1 的变化与波形蛋白相似,并指出与 Notch 之间可能存在联系。事实上,Notch3 信号在波形蛋白缺失的小鼠中受损,而波形蛋白缺失的小鼠在 Jagged1 内皮和平滑肌缺失的小鼠中表现出动脉导管未闭的表型。
通过单细胞 RNA 测序,并通过在小鼠中追踪动脉导管的闭合,我们发现了波形蛋白出人意料的贡献,它通过包括 Notch 信号通路失调在内的机制,驱动动脉导管的完全闭合。