Suppr超能文献

波形蛋白调节 Notch 信号强度,并响应血流动力学应激调节动脉重塑。

Vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic stress.

机构信息

Åbo Akademi University, Faculty of Science and Engineering, Biosciences, Turku, Finland.

Eindhoven University of Technology, Department of Biomedical Engineering, 5600, MB, Eindhoven, The Netherlands.

出版信息

Sci Rep. 2019 Aug 27;9(1):12415. doi: 10.1038/s41598-019-48218-w.

Abstract

The intermediate filament (IF) cytoskeleton has been proposed to regulate morphogenic processes by integrating the cell fate signaling machinery with mechanical cues. Signaling between endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) through the Notch pathway regulates arterial remodeling in response to changes in blood flow. Here we show that the IF-protein vimentin regulates Notch signaling strength and arterial remodeling in response to hemodynamic forces. Vimentin is important for Notch transactivation by ECs and vimentin knockout mice (VimKO) display disrupted VSMC differentiation and adverse remodeling in aortic explants and in vivo. Shear stress increases Jagged1 levels and Notch activation in a vimentin-dependent manner. Shear stress induces phosphorylation of vimentin at serine 38 and phosphorylated vimentin interacts with Jagged1 and increases Notch activation potential. Reduced Jagged1-Notch transactivation strength disrupts lateral signal induction through the arterial wall leading to adverse remodeling. Taken together we demonstrate that vimentin forms a central part of a mechanochemical transduction pathway that regulates multilayer communication and structural homeostasis of the arterial wall.

摘要

中间丝(IF)细胞骨架被认为通过将细胞命运信号机制与机械线索整合在一起,来调节形态发生过程。内皮细胞(ECs)和血管平滑肌细胞(VSMCs)之间通过 Notch 途径的信号转导,调节血管对血流变化的重塑。在这里,我们表明 IF 蛋白波形蛋白调节 Notch 信号强度和对血流动力的动脉重塑。波形蛋白对于 ECs 的 Notch 转激活很重要,并且波形蛋白敲除小鼠(VimKO)显示出 VSMC 分化和主动脉外植体和体内的不利重塑受损。切应力以波形蛋白依赖性方式增加 Jagged1 水平和 Notch 激活。切应力诱导波形蛋白丝氨酸 38 磷酸化,磷酸化的波形蛋白与 Jagged1 相互作用并增加 Notch 激活潜能。Jagged1-Notch 转激活强度的降低破坏了通过动脉壁的横向信号诱导,导致不利重塑。总之,我们证明了波形蛋白形成了一个机械化学转导途径的核心部分,该途径调节动脉壁的多层通讯和结构稳态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dec7/6712036/4431dbf4d7b9/41598_2019_48218_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验