García-Ben Javier, López-Beceiro Jorge, Artiaga Ramon, Salgado-Beceiro Jorge, Delgado-Ferreiro Ignacio, Kolen'ko Yury V, Castro-García Socorro, Señarís-Rodríguez María Antonia, Sánchez-Andújar Manuel, Bermúdez-García Juan Manuel
Quimolmat, Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña,, Rúa as Carballeiras, 15071 A Coruña, Spain.
Quimolmat, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira, 15008 A Coruña, Spain.
Chem Mater. 2022 Apr 12;34(7):3323-3332. doi: 10.1021/acs.chemmater.2c00137. Epub 2022 Mar 30.
In this work, "breathing-caloric" effect is introduced as a new term to define very large thermal changes that arise from the combination of structural changes and gas adsorption processes occurring during breathing transitions. In regard to cooling and heating applications, this innovative caloric effect appears under very low working pressures and in a wide operating temperature range. This phenomenon, whose origin is analyzed in depth, is observed and reported here for the first time in the porous hybrid organic-inorganic MIL-53(Al) material. This MOF compound exhibits colossal thermal changes of Δ ∼ 311 J K kg and Δ ∼ 93 kJ kg at room temperature (298 K) and under only 16 bar, pressure which is similar to that of common gas refrigerants at the same operating temperature (for instance, (CO) ∼ 64 bar and (R134a) ∼ 6 bar) and noticeably lower than > 1000 bar of most solid barocaloric materials. Furthermore, MIL-53(Al) can operate in a very wide temperature range from 333 K down to 254 K, matching the operating requirements of most HVAC systems. Therefore, these findings offer new eco-friendly alternatives to the current refrigeration systems that can be easily adapted to existing technologies and open the door to the innovation of future cooling systems yet to be developed.
在本研究中,引入了“呼吸热”效应这一新术语,用于定义在呼吸转变过程中结构变化与气体吸附过程相结合所产生的非常大的热变化。对于冷却和加热应用而言,这种创新的热效应在非常低的工作压力下以及较宽的工作温度范围内出现。本文首次在多孔有机-无机杂化材料MIL-53(Al)中观察并报道了这一现象,其起源也得到了深入分析。这种金属有机框架化合物在室温(298K)且仅在16巴压力下展现出巨大的热变化,Δ约为311焦耳/千克·开尔文和Δ约为93千焦/千克,该压力与相同工作温度下常见气体制冷剂的压力相近(例如,二氧化碳约为64巴,R134a约为6巴),且明显低于大多数固体正热材料的>1000巴。此外,MIL-53(Al)能够在从333K到254K的非常宽的温度范围内运行,符合大多数暖通空调系统的运行要求。因此,这些发现为当前制冷系统提供了新的环保替代方案,能够轻松适应现有技术,并为未来尚未开发的冷却系统创新打开了大门。