Suppr超能文献

塔利斯广义熵增强了转录组数据集的解释。

The Tsallis generalized entropy enhances the interpretation of transcriptomics datasets.

机构信息

Sorbonne Université, INSERM, UMR-S 959, Immunology-Immunopathology- Immunotherapy (i3), Paris, France.

AP-HP, Hôpital Pitié-Salpêtrière, Biotherapy (CIC-BTi) and Inflammation-Immunopathology-Biotherapy Department (i2B), Paris, France.

出版信息

PLoS One. 2022 Apr 21;17(4):e0266618. doi: 10.1371/journal.pone.0266618. eCollection 2022.

Abstract

BACKGROUND

Identifying differentially expressed genes between experimental conditions is still the gold-standard approach to interpret transcriptomic profiles. Alternative approaches based on diversity measures have been proposed to complement the interpretation of such datasets but are only used marginally.

METHODS

Here, we reinvestigated diversity measures, which are commonly used in ecology, to characterize mice pregnancy microenvironments based on a public transcriptome dataset. Mainly, we evaluated the Tsallis entropy function to explore the potential of a collection of diversity measures for capturing relevant molecular event information.

RESULTS

We demonstrate that the Tsallis entropy function provides additional information compared to the traditional diversity indices, such as the Shannon and Simpson indices. Depending on the relative importance given to the most abundant transcripts based on the Tsallis entropy function parameter, our approach allows appreciating the impact of biological stimulus on the inter-individual variability of groups of samples. Moreover, we propose a strategy for reducing the complexity of transcriptome datasets using a maximation of the beta diversity.

CONCLUSIONS

We highlight that a diversity-based analysis is suitable for capturing complex molecular events occurring during physiological events. Therefore, we recommend their use through the Tsallis entropy function to analyze transcriptomics data in addition to differential expression analyses.

摘要

背景

鉴定实验条件之间差异表达的基因仍然是解释转录组图谱的金标准方法。基于多样性测度的替代方法已经被提出以补充此类数据集的解释,但仅被少量使用。

方法

在这里,我们重新研究了多样性测度,这些测度在生态学中常用,基于一个公共转录组数据集来描述小鼠妊娠微环境。主要,我们评估了 Tsallis 熵函数,以探索一组多样性测度捕获相关分子事件信息的潜力。

结果

我们证明,Tsallis 熵函数提供了比传统多样性指数(如香农和辛普森指数)更多的信息。根据 Tsallis 熵函数参数对最丰富转录本的相对重要性,我们的方法允许评估生物刺激对样本组个体间变异性的影响。此外,我们提出了一种使用β多样性最大化来简化转录组数据集的复杂性的策略。

结论

我们强调,基于多样性的分析适合捕获生理事件中发生的复杂分子事件。因此,我们建议除了差异表达分析外,还可以通过 Tsallis 熵函数来分析转录组数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/038f/9022844/50654c7670b9/pone.0266618.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验