Brochet Thibaud, Lapuyade-Lahorgue Jérôme, Huat Alexandre, Thureau Sébastien, Pasquier David, Gardin Isabelle, Modzelewski Romain, Gibon David, Thariat Juliette, Grégoire Vincent, Vera Pierre, Ruan Su
LITIS, Quantif, University of Rouen, 76000 Rouen, France.
Centre Henri Becquerel, 76038 Rouen, France.
Entropy (Basel). 2022 Mar 22;24(4):436. doi: 10.3390/e24040436.
In this paper, we propose to quantitatively compare loss functions based on parameterized Tsallis-Havrda-Charvat entropy and classical Shannon entropy for the training of a deep network in the case of small datasets which are usually encountered in medical applications. Shannon cross-entropy is widely used as a loss function for most neural networks applied to the segmentation, classification and detection of images. Shannon entropy is a particular case of Tsallis-Havrda-Charvat entropy. In this work, we compare these two entropies through a medical application for predicting recurrence in patients with head-neck and lung cancers after treatment. Based on both CT images and patient information, a multitask deep neural network is proposed to perform a recurrence prediction task using cross-entropy as a loss function and an image reconstruction task. Tsallis-Havrda-Charvat cross-entropy is a parameterized cross-entropy with the parameter α. Shannon entropy is a particular case of Tsallis-Havrda-Charvat entropy for α=1. The influence of this parameter on the final prediction results is studied. In this paper, the experiments are conducted on two datasets including in total 580 patients, of whom 434 suffered from head-neck cancers and 146 from lung cancers. The results show that Tsallis-Havrda-Charvat entropy can achieve better performance in terms of prediction accuracy with some values of α.
在本文中,我们提议在医学应用中通常会遇到的小数据集情况下,基于参数化的Tsallis-Havrda-Charvat熵和经典的香农熵对损失函数进行定量比较,以用于深度网络的训练。香农交叉熵被广泛用作大多数应用于图像分割、分类和检测的神经网络的损失函数。香农熵是Tsallis-Havrda-Charvat熵的一种特殊情况。在这项工作中,我们通过一个医学应用来比较这两种熵,该应用用于预测头颈癌和肺癌患者治疗后的复发情况。基于CT图像和患者信息,提出了一种多任务深度神经网络,使用交叉熵作为损失函数来执行复发预测任务以及图像重建任务。Tsallis-Havrda-Charvat交叉熵是带有参数α的参数化交叉熵。对于α = 1,香农熵是Tsallis-Havrda-Charvat熵的一种特殊情况。研究了该参数对最终预测结果的影响。本文在两个数据集上进行了实验,总共包括580名患者,其中434名患有头颈癌,146名患有肺癌。结果表明,对于某些α值,Tsallis-Havrda-Charvat熵在预测准确性方面可以取得更好的性能。