Guseynov N M, Pogosov W V
Dukhov Research Institute of Automatics (VNIIA), Moscow, Russia.
Moscow State University, Moscow, Russia.
J Phys Condens Matter. 2022 May 11;34(28). doi: 10.1088/1361-648X/ac6927.
We consider a hybrid digital-analog quantum computing approach, which allows implementing any quantum algorithm without standard two-qubit gates. This approach is based on the always-on interaction between qubits, which can provide an alternative to such gates. We show how digital-analog approach can be applied to simulate the dynamics of fermionic systems, in particular, the Fermi-Hubbard model, using fermionic SWAP network and refocusing technique. We concentrate on the effects of connectivity topology, the spread of interaction constants as well as on errors of entangling operations. We find that an optimal connectivity topology of qubits for the digital-analog simulation of fermionic systems of arbitrary dimensionality is a chain for spinless fermions and a ladder for spin 1/2 particles. Such a simple connectivity topology makes digital-analog approach attractive for the simulation of quantum materials and molecules.
我们考虑一种混合数字 - 模拟量子计算方法,该方法允许在不使用标准双量子比特门的情况下实现任何量子算法。这种方法基于量子比特之间的持续相互作用,这种相互作用可以替代此类门。我们展示了数字 - 模拟方法如何应用于使用费米子交换网络和重聚焦技术来模拟费米子系统的动力学,特别是费米 - 哈伯德模型。我们专注于连通性拓扑的影响、相互作用常数的分布以及纠缠操作的误差。我们发现,对于任意维度的费米子系统的数字 - 模拟,量子比特的最优连通性拓扑对于无自旋费米子是链状,对于自旋为1/2的粒子是梯状。这样一种简单的连通性拓扑使得数字 - 模拟方法对于量子材料和分子的模拟具有吸引力。