Bonini Fabien, Mosser Sébastien, Mor Flavio Maurizio, Boutabla Anissa, Burch Patrick, Béduer Amélie, Roux Adrien, Braschler Thomas
Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, CH-1022 Geneva, Switzerland.
Neurix SA, Avenue de la Roseraie 64, CH-1022 Geneva, Switzerland.
Brain Sci. 2022 Mar 22;12(4):417. doi: 10.3390/brainsci12040417.
Recent advances in biomaterials offer new possibilities for brain tissue reconstruction. Biocompatibility, provision of cell adhesion motives and mechanical properties are among the present main design criteria. We here propose a radically new and potentially major element determining biointegration of porous biomaterials: the favorable effect of interstitial fluid pressure (IFP). The force applied by the lymphatic system through the interstitial fluid pressure on biomaterial integration has mostly been neglected so far. We hypothesize it has the potential to force 3D biointegration of porous biomaterials. In this study, we develop a capillary hydrostatic device to apply controlled in vitro interstitial fluid pressure and study its effect during 3D tissue culture. We find that the IFP is a key player in porous biomaterial tissue integration, at physiological IFP levels, surpassing the known effect of cell adhesion motives. Spontaneous electrical activity indicates that the culture conditions are not harmful for the cells. Our work identifies interstitial fluid pressure at physiological negative values as a potential main driver for tissue integration into porous biomaterials. We anticipate that controlling the IFP level could narrow the gap between in vivo and in vitro and therefore decrease the need for animal screening in biomaterial design.
生物材料的最新进展为脑组织重建提供了新的可能性。生物相容性、提供细胞黏附基序和机械性能是目前主要的设计标准。我们在此提出一个全新的、可能是决定多孔生物材料生物整合的主要因素:组织液压力(IFP)的有利作用。到目前为止,淋巴系统通过组织液压力对生物材料整合所施加的力大多被忽视了。我们假设它有可能推动多孔生物材料的三维生物整合。在本研究中,我们开发了一种毛细管静水装置,以施加可控的体外组织液压力,并研究其在三维组织培养过程中的作用。我们发现,在生理IFP水平下,IFP是多孔生物材料组织整合的关键因素,其作用超过了已知的细胞黏附基序的作用。自发电活动表明培养条件对细胞无害。我们的工作确定了生理负值下的组织液压力是组织整合到多孔生物材料中的一个潜在主要驱动因素。我们预计,控制IFP水平可以缩小体内和体外之间的差距,从而减少生物材料设计中对动物筛选的需求。