Suppr超能文献

在严重遮挡情况下追踪高度相似的大鼠实例:一种无监督深度生成管道

Tracking Highly Similar Rat Instances under Heavy Occlusions: An Unsupervised Deep Generative Pipeline.

作者信息

Gelencsér-Horváth Anna, Kopácsi László, Varga Viktor, Keller Dávid, Dobolyi Árpád, Karacs Kristóf, Lőrincz András

机构信息

Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/A, 1083 Budapest, Hungary.

Department of Artificial Intelligence, Faculty of Informatics, Eötvös Loránd University, Pázmány Péter Sétány 1/C, 1117 Budapest, Hungary.

出版信息

J Imaging. 2022 Apr 13;8(4):109. doi: 10.3390/jimaging8040109.

Abstract

Identity tracking and instance segmentation are crucial in several areas of biological research. Behavior analysis of individuals in groups of similar animals is a task that emerges frequently in agriculture or pharmaceutical studies, among others. Automated annotation of many hours of surveillance videos can facilitate a large number of biological studies/experiments, which otherwise would not be feasible. Solutions based on machine learning generally perform well in tracking and instance segmentation; however, in the case of identical, unmarked instances (e.g., white rats or mice), even state-of-the-art approaches can frequently fail. We propose a pipeline of deep generative models for identity tracking and instance segmentation of highly similar instances, which, in contrast to most region-based approaches, exploits edge information and consequently helps to resolve ambiguity in heavily occluded cases. Our method is trained by synthetic data generation techniques, not requiring prior human annotation. We show that our approach greatly outperforms other state-of-the-art unsupervised methods in identity tracking and instance segmentation of unmarked rats in real-world laboratory video recordings.

摘要

身份跟踪和实例分割在生物研究的多个领域至关重要。对相似动物群体中的个体进行行为分析是农业或制药研究等领域经常出现的任务。对长达数小时的监控视频进行自动标注可以促进大量生物学研究/实验,否则这些研究/实验将不可行。基于机器学习的解决方案通常在跟踪和实例分割方面表现良好;然而,对于相同的、未标记的实例(例如白鼠或小鼠),即使是最先进的方法也经常会失败。我们提出了一种用于高度相似实例的身份跟踪和实例分割的深度生成模型管道,与大多数基于区域的方法不同,该管道利用边缘信息,从而有助于解决严重遮挡情况下的模糊性。我们的方法通过合成数据生成技术进行训练,不需要事先进行人工标注。我们表明,在真实实验室视频记录中对未标记大鼠进行身份跟踪和实例分割时,我们的方法大大优于其他最先进的无监督方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf4a/9026709/0ea27e1f0866/jimaging-08-00109-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验