Suppr超能文献

基于 3D 同心电极的交流电电流体动力学:生物分析的设计、模拟、制造和潜在应用。

3D Concentric Electrodes-Based Alternating Current Electrohydrodynamics: Design, Simulation, Fabrication, and Potential Applications for Bioassays.

机构信息

Sensors Laboratory, Advanced Membranes & Porous Materials Centre (AMPMC), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

Electrical and Computer Engineering (ECE) Program, Computer, Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

出版信息

Biosensors (Basel). 2022 Apr 6;12(4):215. doi: 10.3390/bios12040215.

Abstract

Two-dimensional concentric asymmetric microelectrodes play a crucial role in developing sensitive and specific biological assays using fluid micromixing generated by alternating current electrohydrodynamics (ac-EHD). This paper reports the design, simulation, fabrication, and characterization of fluid motion generated by 3D concentric microelectrodes for the first time. Electric field simulations are used to compare electric field distribution at the electrodes and to analyze its effects on microfluidic micromixing in 2D and 3D electrodes. Three-dimensional devices show higher electric field peak values, resulting in better fluid micromixing than 2D devices. As a proof of concept, we design a simple biological assay comprising specific attachment of streptavidin beads onto the biotin-modified electrodes (2D and 3D), which shows ~40% higher efficiency of capturing specific beads in the case of 3D ac-EHD device compared to the 2D device. Our results show a significant contribution toward developing 3D ac-EHD devices that can be used to create more efficient biological assays in the future.

摘要

二维同心非对称微电极在使用交流电动力学(ac-EHD)产生的流体微混合来开发敏感和特异的生物分析中起着至关重要的作用。本文首次报道了用于产生流体运动的 3D 同心微电极的设计、模拟、制造和特性。电场模拟用于比较电极处的电场分布,并分析其对 2D 和 3D 电极中微流道微混合的影响。三维器件显示出更高的电场峰值,从而比二维器件具有更好的流体微混合效果。作为概念验证,我们设计了一个简单的生物分析,包括链霉亲和素珠在生物素修饰电极(2D 和 3D)上的特异性附着,与 2D 器件相比,在 3D ac-EHD 器件中,特定珠的捕获效率提高了约 40%。我们的结果表明,在开发可用于未来更有效生物分析的 3D ac-EHD 器件方面取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c94/9028247/25428117f61e/biosensors-12-00215-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验