Suppr超能文献

基于机器学习算法辅助快速拉曼成像的无标记癌细胞与正常细胞区分。

Label-Free Differentiation of Cancer and Non-Cancer Cells Based on Machine-Learning-Algorithm-Assisted Fast Raman Imaging.

机构信息

School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73072, USA.

Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73072, USA.

出版信息

Biosensors (Basel). 2022 Apr 15;12(4):250. doi: 10.3390/bios12040250.

Abstract

This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral data processing approach based on machine learning methods proved capable of presenting the cell structure and distinguishing cancer cells from non-cancer muscle cells without compromising full-spectrum information. This study discovered that biomolecular information-nucleic acids, proteins, and lipids-from cells could be retrieved efficiently from low-quality hyperspectral Raman datasets and then employed for cell line differentiation.

摘要

本文提出了一种快速、无标记、非侵入式的方法,利用机器学习辅助的拉曼光谱成像技术,从非癌细胞(C2C12 肌肉细胞)中识别出鼠类癌细胞(B16F10 黑色素瘤癌细胞)。通过快速拉曼光谱成像,一种基于机器学习方法的高光谱数据处理方法证明能够呈现细胞结构,并在不牺牲全光谱信息的情况下,区分癌细胞和非癌细胞肌肉细胞。本研究发现,可以从低质量的高光谱拉曼数据集中有效地提取细胞的生物分子信息(核酸、蛋白质和脂质),然后用于细胞系分化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2261/9031282/a8e66100538c/biosensors-12-00250-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验