School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73072, USA.
Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73072, USA.
Biosensors (Basel). 2022 Apr 15;12(4):250. doi: 10.3390/bios12040250.
This paper proposes a rapid, label-free, and non-invasive approach for identifying murine cancer cells (B16F10 melanoma cancer cells) from non-cancer cells (C2C12 muscle cells) using machine-learning-assisted Raman spectroscopic imaging. Through quick Raman spectroscopic imaging, a hyperspectral data processing approach based on machine learning methods proved capable of presenting the cell structure and distinguishing cancer cells from non-cancer muscle cells without compromising full-spectrum information. This study discovered that biomolecular information-nucleic acids, proteins, and lipids-from cells could be retrieved efficiently from low-quality hyperspectral Raman datasets and then employed for cell line differentiation.
本文提出了一种快速、无标记、非侵入式的方法,利用机器学习辅助的拉曼光谱成像技术,从非癌细胞(C2C12 肌肉细胞)中识别出鼠类癌细胞(B16F10 黑色素瘤癌细胞)。通过快速拉曼光谱成像,一种基于机器学习方法的高光谱数据处理方法证明能够呈现细胞结构,并在不牺牲全光谱信息的情况下,区分癌细胞和非癌细胞肌肉细胞。本研究发现,可以从低质量的高光谱拉曼数据集中有效地提取细胞的生物分子信息(核酸、蛋白质和脂质),然后用于细胞系分化。