Cañueto Daniel, Salek Reza M, Bulló Mònica, Correig Xavier, Cañellas Nicolau
Department of Electronic Engineering and Automation, University Rovira i Virgili, 43007 Tarragona, Spain.
Bruker BioSpin GmbH, Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany.
Metabolites. 2022 Mar 24;12(4):283. doi: 10.3390/metabo12040283.
The quality of automatic metabolite profiling in NMR datasets from complex matrices can be affected by the numerous sources of variability. These sources, as well as the presence of multiple low-intensity signals, cause uncertainty in the metabolite signal parameters. Lineshape fitting approaches often produce suboptimal resolutions to adapt them in a complex spectrum lineshape. As a result, the use of software tools for automatic profiling tends to be restricted to specific biological matrices and/or sample preparation protocols to obtain reliable results. However, the analysis and modelling of the signal parameters collected during initial iteration can be further optimized to reduce uncertainty by generating narrow and accurate predictions of the expected signal parameters. In this study, we show that, thanks to the predictions generated, better profiling quality indicators can be outputted, and the performance of automatic profiling can be maximized. Our proposed workflow can learn and model the sample properties; therefore, restrictions in the biological matrix, or sample preparation protocol, and limitations of lineshape fitting approaches can be overcome.
来自复杂基质的核磁共振数据集的自动代谢物谱分析质量可能会受到众多变异性来源的影响。这些来源以及多个低强度信号的存在,会导致代谢物信号参数的不确定性。线形拟合方法通常会产生次优分辨率,以使其适应复杂的光谱线形。因此,用于自动谱分析的软件工具的使用往往局限于特定的生物基质和/或样品制备方案,以获得可靠的结果。然而,在初始迭代过程中收集的信号参数的分析和建模可以进一步优化,通过生成预期信号参数的窄而准确的预测来减少不确定性。在本研究中,我们表明,由于生成了预测,可以输出更好的谱分析质量指标,并使自动谱分析的性能最大化。我们提出的工作流程可以学习并对样品特性进行建模;因此,可以克服生物基质、样品制备方案的限制以及线形拟合方法的局限性。