Suppr超能文献

牛津纳米孔和百奥诺基因组学技术在植物结构变异检测中的评估。

Oxford Nanopore and Bionano Genomics technologies evaluation for plant structural variation detection.

机构信息

Université Paris-Saclay, INRAE, Etude du Polymorphisme des Génomes Végétaux EPGV, 91000, Evry-Courcouronnes, France.

Genoscope, Institut de biologie François-Jacob, Commissariat à l'Energie Atomique CEA, Université Paris-Saclay, Evry, France.

出版信息

BMC Genomics. 2022 Apr 21;23(1):317. doi: 10.1186/s12864-022-08499-4.

Abstract

BACKGROUND

Structural Variations (SVs) are genomic rearrangements derived from duplication, deletion, insertion, inversion, and translocation events. In the past, SVs detection was limited to cytological approaches, then to Next-Generation Sequencing (NGS) short reads and partitioned assemblies. Nowadays, technologies such as DNA long read sequencing and optical mapping have revolutionized the understanding of SVs in genomes, due to the enhancement of the power of SVs detection. This study aims to investigate performance of two techniques, 1) long-read sequencing obtained with the MinION device (Oxford Nanopore Technologies) and 2) optical mapping obtained with Saphyr device (Bionano Genomics) to detect and characterize SVs in the genomes of the two ecotypes of Arabidopsis thaliana, Columbia-0 (Col-0) and Landsberg erecta 1 (Ler-1).

RESULTS

We described the SVs detected from the alignment of the best ONT assembly and DLE-1 optical maps of A. thaliana Ler-1 against the public reference genome Col-0 TAIR10.1. After filtering (SV > 1 kb), 1184 and 591 Ler-1 SVs were retained from ONT and Bionano technologies respectively. A total of 948 Ler-1 ONT SVs (80.1%) corresponded to 563 Bionano SVs (95.3%) leading to 563 common locations. The specific locations were scrutinized to assess improvement in SV detection by either technology. The ONT SVs were mostly detected near TE and gene features, and resistance genes seemed particularly impacted.

CONCLUSIONS

Structural variations linked to ONT sequencing error were removed and false positives limited, with high quality Bionano SVs being conserved. When compared with the Col-0 TAIR10.1 reference genome, most of the detected SVs discovered by both technologies were found in the same locations. ONT assembly sequence leads to more specific SVs than Bionano one, the latter being more efficient to characterize large SVs. Even if both technologies are complementary approaches, ONT data appears to be more adapted to large scale populations studies, while Bionano performs better in improving assembly and describing specificity of a genome compared to a reference.

摘要

背景

结构变异(SVs)是由重复、缺失、插入、倒位和易位事件衍生的基因组重排。过去,SVs 的检测仅限于细胞学方法,然后是下一代测序(NGS)短读长和分区组装。如今,由于 SVs 检测能力的增强,DNA 长读测序和光学图谱等技术已经彻底改变了我们对基因组中 SVs 的理解。本研究旨在调查两种技术的性能,1)使用 MinION 设备(Oxford Nanopore Technologies)获得的长读测序,2)使用 Saphyr 设备(Bionano Genomics)获得的光学图谱,以检测和表征拟南芥两个生态型哥伦比亚-0(Col-0)和 Landsberg erecta 1(Ler-1)基因组中的 SVs。

结果

我们描述了从 Ler-1 对公共参考基因组 Col-0 TAIR10.1 的最佳 ONT 组装和 DLE-1 光学图谱的比对中检测到的 SVs。过滤(SV>1kb)后,ONT 和 Bionano 技术分别保留了 1184 个和 591 个 Ler-1 SVs。总共 948 个 Ler-1 ONT SVs(80.1%)对应于 563 个 Bionano SVs(95.3%),导致 563 个共同位置。仔细检查特定位置以评估任何一种技术对 SV 检测的改进。ONT SVs 主要检测到 TE 和基因特征附近,抗性基因似乎受到特别影响。

结论

通过去除与 ONT 测序错误相关的结构变异并限制假阳性,保留了高质量的 Bionano SVs。与 Col-0 TAIR10.1 参考基因组相比,两种技术检测到的大多数 SVs都位于相同位置。ONT 组装序列比 Bionano 序列产生更具体的 SVs,后者更有效地描述大 SVs。尽管两种技术都是互补的方法,但 ONT 数据似乎更适合大规模种群研究,而 Bionano 与参考基因组相比,在提高组装质量和描述基因组特异性方面表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a80/9026655/201a93e42854/12864_2022_8499_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验