Suppr超能文献

利用非靶向代谢组学分析和从分析数据中学习的疾病特异性网络进行代谢紊乱的临床诊断。

Clinical diagnosis of metabolic disorders using untargeted metabolomic profiling and disease-specific networks learned from profiling data.

机构信息

Quantitative and Computational Biosciences Program, Baylor College of Medicine, One Baylor Plaza, 400D, Houston, TX, 77030, USA.

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

出版信息

Sci Rep. 2022 Apr 21;12(1):6556. doi: 10.1038/s41598-022-10415-5.

Abstract

Untargeted metabolomics is a global molecular profiling technology that can be used to screen for inborn errors of metabolism (IEMs). Metabolite perturbations are evaluated based on current knowledge of specific metabolic pathway deficiencies, a manual diagnostic process that is qualitative, has limited scalability, and is not equipped to learn from accumulating clinical data. Our purpose was to improve upon manual diagnosis of IEMs in the clinic by developing novel computational methods for analyzing untargeted metabolomics data. We employed CTD, an automated computational diagnostic method that "connects the dots" between metabolite perturbations observed in individual metabolomics profiling data and modules identified in disease-specific metabolite co-perturbation networks learned from prior profiling data. We also extended CTD to calculate distances between any two individuals (CTDncd) and between an individual and a disease state (CTDdm), to provide additional network-quantified predictors for use in diagnosis. We show that across 539 plasma samples, CTD-based network-quantified measures can reproduce accurate diagnosis of 16 different IEMs, including adenylosuccinase deficiency, argininemia, argininosuccinic aciduria, aromatic L-amino acid decarboxylase deficiency, cerebral creatine deficiency syndrome type 2, citrullinemia, cobalamin biosynthesis defect, GABA-transaminase deficiency, glutaric acidemia type 1, maple syrup urine disease, methylmalonic aciduria, ornithine transcarbamylase deficiency, phenylketonuria, propionic acidemia, rhizomelic chondrodysplasia punctata, and the Zellweger spectrum disorders. Our approach can be used to supplement information from biochemical pathways and has the potential to significantly enhance the interpretation of variants of uncertain significance uncovered by exome sequencing. CTD, CTDdm, and CTDncd can serve as an essential toolset for biological interpretation of untargeted metabolomics data that overcomes limitations associated with manual diagnosis to assist diagnosticians in clinical decision-making. By automating and quantifying the interpretation of perturbation patterns, CTD can improve the speed and confidence by which clinical laboratory directors make diagnostic and treatment decisions, while automatically improving performance with new case data.

摘要

非靶向代谢组学是一种全局分子分析技术,可用于筛查先天性代谢缺陷(IEM)。代谢物的扰动是根据特定代谢途径缺陷的现有知识来评估的,这是一个定性的手动诊断过程,其扩展性有限,并且无法从累积的临床数据中学习。我们的目的是通过开发新的计算方法来分析非靶向代谢组学数据,从而改进 IEM 的临床手动诊断。我们采用了 CTD,这是一种自动计算诊断方法,可以在个体代谢组学分析数据中观察到的代谢物扰动和从先前分析数据中学习到的特定疾病代谢物共扰动网络中识别的模块之间“建立联系”。我们还扩展了 CTD 以计算任意两个人之间的距离(CTDncd)和个体与疾病状态之间的距离(CTDdm),为诊断提供额外的网络量化预测因子。我们证明,在 539 个血浆样本中,基于 CTD 的网络量化指标可以准确复制对 16 种不同 IEM 的诊断,包括腺嘌呤核苷酸琥珀酸酶缺乏症、精氨酸血症、精氨酸琥珀酸尿症、芳香族 L-氨基酸脱羧酶缺乏症、脑 creatine 缺乏综合征 2 型、瓜氨酸血症、钴胺素生物合成缺陷、GABA-转氨酶缺乏症、戊二酸血症 1 型、枫糖尿症、甲基丙二酸血症、鸟氨酸转氨甲酰酶缺乏症、苯丙酮尿症、丙酸血症、rhizomelic chondrodysplasia punctata 和 Zellweger 谱障碍。我们的方法可以用于补充生化途径的信息,并且有可能大大增强对外显子测序发现的不确定意义变异的解释。CTD、CTDdm 和 CTDncd 可以作为非靶向代谢组学数据生物学解释的重要工具集,克服了手动诊断的局限性,有助于诊断医生进行临床决策。通过自动化和量化扰动模式的解释,CTD 可以提高临床实验室主任做出诊断和治疗决策的速度和信心,同时通过新的病例数据自动提高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dc3/9023513/c5e6ce7f3316/41598_2022_10415_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验