Suppr超能文献

住院的新冠肺炎患者和流感患者的房性心律失常数据。

Data of atrial arrhythmias in hospitalized COVID-19 and influenza patients.

作者信息

Jehangir Qasim, Lee Yi, Latack Katie, Poisson Laila, Wang Dee Dee, Song Shiyi, Apala Dinesh R, Patel Kiritkumar, Halabi Abdul R, Krishnamoorthy Geetha, Sule Anupam A

机构信息

Department of Medicine, St. Joseph Mercy Oakland Hospital, Pontiac, MI, United States.

Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, United States.

出版信息

Data Brief. 2022 Jun;42:108177. doi: 10.1016/j.dib.2022.108177. Epub 2022 Apr 14.

Abstract

Atrial arrhythmias (AA) are common in hospitalized COVID-19 patients with limited data on their association with COVID-19 infection, clinical and imaging outcomes. In the related research article using retrospective research data from one quaternary care and five community hospitals, patients aged 18 years and above with positive SARS-CoV-2 polymerase chain reaction test were included. 6927 patients met the inclusion criteria. The data in this article provides demographics, home medications, in-hospital events and COVID-19 treatments, multivariable generalized linear regression regression models using a log link with a Poisson distribution (multi-parameter regression [MPR]) to determine predictors of new-onset AA and mortality in COVID-19 patients, computerized tomography chest scan findings, echocardiographic findings, and International Classification of Diseases-Tenth Revision codes. The clinical outcomes were compared to a propensity-matched cohort of influenza patients. For influenza, data is reported on baseline demographics, comorbid conditions, and in-hospital events. Generalized linear regression models were built for COVID-19 patients using demographic characteristics, comorbid conditions, and presenting labs which were significantly different between the groups, and hypoxia in the emergency room. Statistical analysis was performed using R programming language (version 4, ggplot2 package). Multivariable generalized linear regression model showed that, relative to normal sinus rhythm, history of AA (adjusted relative risk [RR]: 1.38; 95% CI: 1.11-1.71;  = 0.003) and newly-detected AA (adjusted RR: 2.02 95% CI: 1.68-2.43;  < 0.001) were independently associated with higher in-hospital mortality. Age in increments of 10 years, male sex, White race, prior history of coronary artery disease, congestive heart failure, end-stage renal disease, presenting leukocytosis, hypermagnesemia, and hypomagnesemia were found to be independent predictors of new-onset AA in the MPR model. The dataset reported is related to the research article entitled "Incidence, Mortality, and Imaging Outcomes of Atrial Arrhythmias in COVID-19" [Jehangir et al. Incidence, Mortality, and Imaging Outcomes of Atrial Arrhythmias in COVID-19, American Journal of Cardiology] [1].

摘要

房性心律失常(AA)在住院的COVID-19患者中很常见,但关于其与COVID-19感染、临床及影像学结局之间关联的数据有限。在相关研究文章中,使用了来自一家四级医疗中心和五家社区医院的回顾性研究数据,纳入了年龄在18岁及以上且严重急性呼吸综合征冠状病毒2(SARS-CoV-2)聚合酶链反应检测呈阳性的患者。6927名患者符合纳入标准。本文中的数据提供了人口统计学信息、家庭用药情况、住院期间发生的事件及COVID-19治疗情况,使用对数链接和泊松分布的多变量广义线性回归模型(多参数回归[MPR])来确定COVID-19患者新发房性心律失常和死亡的预测因素、胸部计算机断层扫描结果、超声心动图结果以及国际疾病分类第十版编码。将临床结局与倾向匹配的流感患者队列进行比较。对于流感,报告了基线人口统计学、合并症及住院期间发生的事件的数据。利用人口统计学特征、合并症及两组间存在显著差异的就诊实验室检查结果以及急诊室的低氧情况,为COVID-19患者建立了广义线性回归模型。使用R编程语言(版本4,ggplot2包)进行统计分析。多变量广义线性回归模型显示,相对于正常窦性心律,房性心律失常病史(调整后相对风险[RR]:1.38;95%置信区间:1.11 - 1.71;P = 0.003)和新检测到的房性心律失常(调整后RR:2.02;95%置信区间:1.68 - 2.43;P < 0.001)与更高的住院死亡率独立相关。在MPR模型中,年龄每增加10岁、男性、白人种族、冠状动脉疾病既往史、充血性心力衰竭、终末期肾病、就诊时白细胞增多、高镁血症和低镁血症被发现是新发房性心律失常的独立预测因素。所报告的数据集与题为《COVID-19患者房性心律失常的发病率、死亡率和影像学结局》的研究文章相关[杰汉吉尔等人。COVID-19患者房性心律失常的发病率、死亡率和影像学结局,《美国心脏病学杂志》][1]。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f494/9046593/694188a677d6/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验