Federal University of Maranhão, São Luís-Maranhão, Brazil.
Federal Institute of Education, Science and Technology of Maranhão, São Luís-Maranhão, Brazil.
ISA Trans. 2022 May;124:57-68. doi: 10.1016/j.isatra.2022.03.031. Epub 2022 Apr 8.
This paper presents a computational model based on interval type-2 fuzzy systems for analysis and forecasting of COVID-19 dynamic spreading behavior. The proposed methodology is related to interval type-2 fuzzy Kalman filters design from experimental data of daily deaths reports. Initially, a recursive spectral decomposition is performed on the experimental dataset to extract relevant unobservable components for parametric estimation of the interval type-2 fuzzy Kalman filter. The antecedent propositions of fuzzy rules are obtained by formulating a type-2 fuzzy clustering algorithm. The state space submodels and the interval Kalman gains in consequent propositions of fuzzy rules are recursively updated by a proposed interval type-2 fuzzy Observer/Kalman Filter Identification (OKID) algorithm, taking into account the unobservable components obtained by recursive spectral decomposition of epidemiological experimental data of COVID-19. For validation purposes, through a comparative analysis with relevant references of literature, the proposed methodology is evaluated from the adaptive tracking and forecasting of COVID-19 dynamic spreading behavior, in Brazil, with the better results for RMSE of 1.24×10, MAE of 2.62×10, R of 0.99976, and MAPE of 6.33×10.
本文提出了一种基于区间型 2 模糊系统的计算模型,用于分析和预测 COVID-19 的动态传播行为。所提出的方法与基于实验数据的区间型 2 模糊卡尔曼滤波器设计有关。首先,对实验数据集进行递归谱分解,以提取相关的不可观测分量,用于参数估计区间型 2 模糊卡尔曼滤波器。模糊规则的前件命题通过制定一种 2 型模糊聚类算法来获得。状态空间子模型和模糊规则后件命题中的区间卡尔曼增益通过提出的区间型 2 模糊观测器/卡尔曼滤波器辨识(OKID)算法递归更新,考虑到通过 COVID-19 流行病学实验数据的递归谱分解获得的不可观测分量。为了验证目的,通过与文献中的相关参考文献进行比较分析,从巴西 COVID-19 动态传播行为的自适应跟踪和预测的角度评估了所提出的方法,其 RMSE 为 1.24×10,MAE 为 2.62×10,R 为 0.99976,MAPE 为 6.33×10,结果更好。