Melin Patricia, Sánchez Daniela, Monica Julio Cesar, Castillo Oscar
Tijuana Institute of Technology, Tijuana, Mexico.
Soft comput. 2023;27(6):3245-3282. doi: 10.1007/s00500-020-05549-5. Epub 2021 Jan 13.
In this paper, the latest global COVID-19 pandemic prediction is addressed. Each country worldwide has faced this pandemic differently, reflected in its statistical number of confirmed and death cases. Predicting the number of confirmed and death cases could allow us to know the future number of cases and provide each country with the necessary information to make decisions based on the predictions. Recent works are focused only on confirmed COVID-19 cases or a specific country. In this work, the firefly algorithm designs an ensemble neural network architecture for each one of 26 countries. In this work, we propose the firefly algorithm for ensemble neural network optimization applied to COVID-19 time series prediction with type-2 fuzzy logic in a weighted average integration method. The proposed method finds the number of artificial neural networks needed to form an ensemble neural network and their architecture using a type-2 fuzzy inference system to combine the responses of individual artificial neural networks to perform a final prediction. The advantages of the type-2 fuzzy weighted average integration (FWA) method over the conventional average method and type-1 fuzzy weighted average integration are shown.
本文探讨了最新的全球新冠肺炎疫情预测。世界各国应对这一疫情的方式各不相同,这体现在其确诊病例和死亡病例的统计数字上。预测确诊病例和死亡病例的数量可以让我们了解未来的病例数,并为每个国家提供必要信息,以便根据预测做出决策。近期的研究仅聚焦于新冠肺炎确诊病例或某个特定国家。在这项工作中,萤火虫算法为26个国家中的每一个设计了一个集成神经网络架构。在这项工作中,我们提出将萤火虫算法用于集成神经网络优化,应用于采用加权平均积分法的具有二型模糊逻辑的新冠肺炎时间序列预测。所提出的方法使用二型模糊推理系统来组合各个人工神经网络的响应以进行最终预测,从而找到形成集成神经网络所需的人工神经网络数量及其架构。展示了二型模糊加权平均积分(FWA)方法相对于传统平均方法和一型模糊加权平均积分的优势。