Suppr超能文献

GFN1-xTB 对金属有机骨架进行周期性优化的性能。

Performance of GFN1-xTB for periodic optimization of metal organic frameworks.

机构信息

School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

出版信息

Phys Chem Chem Phys. 2022 May 11;24(18):10906-10914. doi: 10.1039/d2cp00184e.

Abstract

Tight-binding approaches bridge the gap between force field methods and Density Functional Theory (DFT). Density Functional Tight Binding (DFTB) has been employed for a wide range of systems including proteins, clays and 2D and 3D materials. DFTB is 2-3 orders of magnitude faster than DFT, allowing calculations containing up to 5000 atoms. The efficiency of DFTB comes pre-computed integrals, which are parameterized for each pair of atoms, and the requirement for this parameterization has previously prevented widespread use of DFTB for Metal-Organic Frameworks. The GFN-xTB (Geometries, Frequencies, and Non-covalent interactions Tight Binding) method provides parameters for elements up to ≤ 86. We have therefore employed GFN-xTB to periodic optimizations of the Computation Ready Experimental (CoRE) database of MOF structures. We find that 75% of all cell parameters remain within 5% of the reference (experimental) value and that bonds containing metal atoms are typically well conserved with a mean average deviation of 0.187 Å. Therefore GFN-xTB provides the ability to calculate MOF structures more accurately than force fields, and 2 orders of magnitude faster than DFT. We therefore propose that GFN-xTB is a suitable method for screening of hypothetical MOFs ( ≤ 86), with the advantage of accurate binding energies for adsorption applications.

摘要

紧束缚方法在力场方法和密度泛函理论(DFT)之间架起了桥梁。密度泛函紧束缚(DFTB)已被广泛应用于各种系统,包括蛋白质、粘土以及 2D 和 3D 材料。DFTB 比 DFT 快 2-3 个数量级,允许计算包含多达 5000 个原子的系统。DFTB 的效率来自于预先计算的积分,这些积分是针对每一对原子进行参数化的,而这种参数化的要求以前曾阻止了 DFTB 在金属有机骨架(MOF)中的广泛应用。GFN-xTB(几何、频率和非共价相互作用紧束缚)方法为元素提供了高达 ≤86 的参数。因此,我们使用 GFN-xTB 对 MOF 结构的计算就绪实验(CoRE)数据库进行了周期性优化。我们发现,所有晶胞参数中有 75%在 5%的参考值(实验值)范围内,并且含有金属原子的键通常保存得很好,平均平均偏差为 0.187Å。因此,GFN-xTB 能够比力场更准确地计算 MOF 结构,而且比 DFT 快 2 个数量级。因此,我们提出 GFN-xTB 是筛选假设 MOF(≤86)的合适方法,具有吸附应用中准确结合能的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验