Suppr超能文献

自旋轨道耦合修正的 GFN-xTB 方法。

Spin-orbit coupling corrections for the GFN-xTB method.

机构信息

Helmholtz-Zentrum Dresden-Rossendorf, Institut für Ressourcenökologie, Bautzner Landstraße 400, 01328 Dresden, Germany.

出版信息

J Chem Phys. 2023 Jan 28;158(4):044120. doi: 10.1063/5.0129071.

Abstract

Spin-orbit coupling (SOC) is crucial for correct electronic structure analysis in molecules and materials, for example, in large molecular systems such as superatoms, for understanding the role of transition metals in enzymes, and when investigating the energy transfer processes in metal-organic frameworks. We extend the GFN-xTB method, popular to treat extended systems, by including SOC into the hamiltonian operator. We followed the same approach as previously reported for the density-functional tight-binding method and provide and validate the necessary parameters for all elements throughout the Periodic Table. The parameters have been obtained consistently from atomic SOC calculations using the density-functional theory. We tested them for reference structures where SOC is decisive, as in the transition metal containing heme moiety, chromophores in metal-organic frameworks, and in superatoms. Our parameterization paves the path for incorporation of SOC in the GFN-xTB based electronic structure calculations of computationally expensive molecular systems.

摘要

自旋轨道耦合(SOC)对于分子和材料的正确电子结构分析至关重要,例如在超原子等大型分子体系中,对于理解酶中过渡金属的作用,以及在研究金属有机骨架中的能量转移过程时。我们通过将 SOC 纳入哈密顿算符,扩展了广受欢迎的处理扩展系统的 GFN-xTB 方法。我们采用了与之前报道的密度泛函紧束缚方法相同的方法,并为整个元素周期表中的所有元素提供并验证了必要的参数。这些参数是使用密度泛函理论从原子 SOC 计算中一致获得的。我们在 SOC 起决定性作用的参考结构中对其进行了测试,例如含有过渡金属的血红素部分、金属有机骨架中的发色团以及超原子。我们的参数化方法为在基于 GFN-xTB 的电子结构计算中纳入 SOC 铺平了道路,这种方法可用于计算成本高昂的分子体系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验