Suppr超能文献

基于机器学习方法的德国索赔数据中的痴呆风险预测。

Dementia risk predictions from German claims data using methods of machine learning.

机构信息

Institute for Sociology and Demography, University of Rostock, Rostock, Germany.

German Center for Neurodegenerative Diseases, Bonn, Germany.

出版信息

Alzheimers Dement. 2023 Feb;19(2):477-486. doi: 10.1002/alz.12663. Epub 2022 Apr 22.

Abstract

INTRODUCTION

We examined whether German claims data are suitable for dementia risk prediction, how machine learning (ML) compares to classical regression, and what the important predictors for dementia risk are.

METHODS

We analyzed data from the largest German health insurance company, including 117,895 dementia-free people age 65+. Follow-up was 10 years. Predictors were: 23 age-related diseases, 212 medical prescriptions, 87 surgery codes, as well as age and sex. Statistical methods included logistic regression (LR), gradient boosting (GBM), and random forests (RFs).

RESULTS

Discriminatory power was moderate for LR (C-statistic = 0.714; 95% confidence interval [CI] = 0.708-0.720) and GBM (C-statistic = 0.707; 95% CI  = 0.700-0.713) and lower for RF (C-statistic = 0.636; 95% CI  = 0.628-0.643). GBM had the best model calibration. We identified antipsychotic medications and cerebrovascular disease but also a less-established specific antibacterial medical prescription as important predictors.

DISCUSSION

Our models from German claims data have acceptable accuracy and may provide cost-effective decision support for early dementia screening.

摘要

引言

我们研究了德国索赔数据是否适合进行痴呆风险预测,机器学习(ML)与经典回归相比如何,以及痴呆风险的重要预测因素是什么。

方法

我们分析了德国最大的健康保险公司的数据,其中包括 117895 名无痴呆的 65 岁以上人群。随访时间为 10 年。预测因子包括 23 种与年龄相关的疾病、212 种药物处方、87 种手术代码以及年龄和性别。统计方法包括逻辑回归(LR)、梯度提升(GBM)和随机森林(RFs)。

结果

LR(C 统计量= 0.714;95%置信区间 [CI] = 0.708-0.720)和 GBM(C 统计量= 0.707;95% CI = 0.700-0.713)的判别能力中等,而 RF(C 统计量= 0.636;95% CI = 0.628-0.643)的判别能力较低。GBM 的模型校准效果最佳。我们确定了抗精神病药物和脑血管疾病,但也确定了一种不太确定的特定抗菌药物处方是重要的预测因素。

讨论

我们的德国索赔数据模型具有可接受的准确性,可能为早期痴呆筛查提供具有成本效益的决策支持。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验