Suppr超能文献

痴呆风险预测模型有哪些新进展?一项更新的系统评价。

What's New in Dementia Risk Prediction Modelling? An Updated Systematic Review.

作者信息

Brain Jacob, Kafadar Aysegul Humeyra, Errington Linda, Kirkley Rachael, Tang Eugene Y H, Akyea Ralph K, Bains Manpreet, Brayne Carol, Figueredo Grazziela, Greene Leanne, Louise Jennie, Morgan Catharine, Pakpahan Eduwin, Reeves David, Robinson Louise, Salter Amy, Siervo Mario, Tully Phillip J, Turnbull Deborah, Qureshi Nadeem, Stephan Blossom C M

机构信息

Institute of Mental Health, School of Medicine, University of Nottingham, Innovation Park, Jubilee Campus, Nottingham, UK.

Freemasons Foundation Centre for Men's Health, Discipline of Medicine, School of Psychology, The University of Adelaide, Adelaide, SA, Australia.

出版信息

Dement Geriatr Cogn Dis Extra. 2024 Jun 10;14(1):49-74. doi: 10.1159/000539744. eCollection 2024 Jan-Dec.

Abstract

INTRODUCTION

Identifying individuals at high risk of dementia is critical to optimized clinical care, formulating effective preventative strategies, and determining eligibility for clinical trials. Since our previous systematic reviews in 2010 and 2015, there has been a surge in dementia risk prediction modelling. The aim of this study was to update our previous reviews to explore, and critically review, new developments in dementia risk modelling.

METHODS

MEDLINE, Embase, Scopus, and Web of Science were searched from March 2014 to June 2022. Studies were included if they were population- or community-based cohorts (including electronic health record data), had developed a model for predicting late-life incident dementia, and included model performance indices such as discrimination, calibration, or external validation.

RESULTS

In total, 9,209 articles were identified from the electronic search, of which 74 met the inclusion criteria. We found a substantial increase in the number of new models published from 2014 (>50 new models), including an increase in the number of models developed using machine learning. Over 450 unique predictor (component) variables have been tested. Nineteen studies (26%) undertook external validation of newly developed or existing models, with mixed results. For the first time, models have also been developed in low- and middle-income countries (LMICs) and others validated in racial and ethnic minority groups.

CONCLUSION

The literature on dementia risk prediction modelling is rapidly evolving with new analytical developments and testing in LMICs. However, it is still challenging to make recommendations about which one model is the most suitable for routine use in a clinical setting. There is an urgent need to develop a suitable, robust, validated risk prediction model in the general population that can be widely implemented in clinical practice to improve dementia prevention.

摘要

引言

识别痴呆症高风险个体对于优化临床护理、制定有效的预防策略以及确定临床试验资格至关重要。自我们在2010年和2015年进行上次系统评价以来,痴呆症风险预测模型激增。本研究的目的是更新我们之前的综述,以探索并批判性地审视痴呆症风险建模的新进展。

方法

检索了2014年3月至2022年6月期间的MEDLINE、Embase、Scopus和Web of Science数据库。纳入的研究需为基于人群或社区的队列研究(包括电子健康记录数据),已开发出预测晚年痴呆症发病的模型,并包含模型性能指标,如区分度、校准或外部验证。

结果

通过电子检索共识别出9209篇文章,其中74篇符合纳入标准。我们发现2014年以来发表的新模型数量大幅增加(超过50个新模型),包括使用机器学习开发的模型数量增加。已测试了超过450个独特的预测变量(组成部分)。19项研究(26%)对新开发或现有模型进行了外部验证,结果不一。低收入和中等收入国家(LMICs)首次开发了模型,其他一些模型在种族和少数族裔群体中得到了验证。

结论

随着新的分析进展以及在低收入和中等收入国家的测试,痴呆症风险预测建模的文献正在迅速发展。然而,就哪种模型最适合在临床环境中常规使用提出建议仍然具有挑战性。迫切需要在普通人群中开发一种合适、稳健且经过验证的风险预测模型,以便在临床实践中广泛应用,以改善痴呆症的预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4c4/11250535/cf428e01b390/dee-2024-0014-0001-539744_F01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验