Suppr超能文献

迈向基于“大数据”的个性化抗抑郁药物治疗:关于影响治疗反应的稳健因素的最新综述

Towards personalised antidepressive medicine based on "big data": an up-to-date review on robust factors affecting treatment response.

作者信息

Jambor Timea, Juhasz Gabriella, Eszlari Nora

机构信息

Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.

Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary.

出版信息

Neuropsychopharmacol Hung. 2022 Mar 1;24(1):17-28.

Abstract

Prescribing antidepressant medication is currently the most effective way of treating major depression, but only very few patients achieve permanent improvement. Therefore, it is important to identify objectively measurable markers for effective, personalized therapy. The aim of this review article is to collect all the markers that are robustly predictive of the outcome of therapy. We searched for systematic review articles that have simultaneously investigated the effects of as many different markers as possible on the response to antidepressant therapy in major depressive patients. From these we extracted markers that have been found to be significant by at least two independent review studies and that have proven replicable also within each of these reviews. A separate search was performed for meta-analyses of pharmacogenetic genome-wide association studies. Based on our results, onset time, symptom severity, presence of anhedonia, early treatment response, comorbid anxiety, alcohol consumption, frontal EEG theta activity, hippocampal volume, activity of anterior cingulate cortex, as well as a peripheral marker, serum BDNF levels have proven replicable predictors of antidepressant response. Pharmacogenomic studies to date have not yielded replicable results. Predictors identified as robust by our study may provide a starting point for future machine learning models within a 'big data' database of major depressive patients. (Neuropsychopharmacol Hung 2022; 24(1): 17-28).

摘要

目前,开具抗抑郁药物是治疗重度抑郁症最有效的方法,但只有极少数患者能实现永久性改善。因此,识别客观可测量的标志物以进行有效的个性化治疗非常重要。这篇综述文章的目的是收集所有能有力预测治疗结果的标志物。我们搜索了系统评价文章,这些文章同时研究了尽可能多的不同标志物对重度抑郁症患者抗抑郁治疗反应的影响。从中我们提取了至少两项独立综述研究发现具有显著意义且在每项综述中均被证明可重复的标志物。我们还单独搜索了药物基因组全基因组关联研究的荟萃分析。根据我们的结果,发病时间、症状严重程度、快感缺失的存在、早期治疗反应、共病焦虑、饮酒情况、额叶脑电图θ活动、海马体积、前扣带回皮质活动以及一个外周标志物血清脑源性神经营养因子(BDNF)水平已被证明是抗抑郁反应的可重复预测指标。迄今为止,药物基因组学研究尚未得出可重复的结果。我们的研究确定为可靠的预测指标可能为未来重度抑郁症患者“大数据”数据库中的机器学习模型提供一个起点。(《匈牙利神经精神药理学》2022年;24(1): 17 - 28)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验