Suppr超能文献

抗抑郁药处方模式洞察:基于证据的分析。

Insights into prescribing patterns for antidepressants: an evidence-based analysis.

作者信息

Min Hua, Alemi Farrokh

机构信息

Department of Health Administration and Policy, College of Public Health, George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA.

出版信息

BMC Med Inform Decis Mak. 2025 Jan 27;25(1):42. doi: 10.1186/s12911-025-02886-z.

Abstract

BACKGROUND

Antidepressants are a primary treatment for depression, yet prescribing them poses significant challenges due to the absence of clear guidelines for selecting the most suitable option for individual patients. This study aimed to analyze prescribing patterns for antidepressants across healthcare providers, including physicians, physician assistants, nurse practitioners, and pharmacists, to better understand the complex factors influencing these patterns in the management of depression.

METHODS

Least Absolute Shrinkage and Selection Operator (LASSO) regression was employed to identify variables that explained the variation in the prescribed antidepressants, utilizing a large number of claims. Models were created to identify the prescription patterns of the 14 most common antidepressants, including amitriptyline, bupropion, citalopram, desvenlafaxine, doxepin, duloxetine, escitalopram, fluoxetine, mirtazapine, nortriptyline, paroxetine, sertraline, trazodone, and venlafaxine. The accuracy of predictions was measured through the Area under the Receiver Operating Curve (AROC).

RESULTS

Our analysis revealed several key factors influencing prescribing patterns, including patients' comorbidities, previous medications, age, and gender. A history of high antidepressant use (four or more prior medications) was the most common factor across antidepressants. Age influenced prescribing patterns, with mirtazapine and trazodone more frequent among older patients, while fluoxetine and sertraline were more common in younger individuals. Condition-specific factors included trazodone for insomnia, and amitriptyline or nortriptyline for headaches. Paroxetine, venlafaxine, and sertraline more often prescribed to females, while bupropion and doxepin were commonly prescribed for patients with tobacco use disorder and opioid dependence. Predictive factors per medicine ranged from 51 (doxepin) to 168 (citalopram), with cross-validated AROC scores averaging 76.3%.

CONCLUSIONS

Our findings provide valuable insights into the nuanced factors that shape evidence-based antidepressant prescribing practices, offering a foundation for more personalized, effective depression treatment. Further research is needed to validate these models in other extant databases. These findings contribute to a more comprehensive understanding of antidepressant prescribing practices and have the potential to improve patient outcomes in the management of depression.

摘要

背景

抗抑郁药是治疗抑郁症的主要手段,但由于缺乏为个体患者选择最合适药物的明确指南,开具此类药物面临重大挑战。本研究旨在分析包括医生、医师助理、执业护士和药剂师在内的医疗服务提供者的抗抑郁药处方模式,以更好地理解在抑郁症管理中影响这些模式的复杂因素。

方法

采用最小绝对收缩和选择算子(LASSO)回归,利用大量索赔数据来识别解释抗抑郁药处方差异的变量。建立模型以识别14种最常用抗抑郁药的处方模式,这些药物包括阿米替林、安非他酮、西酞普兰、去甲文拉法辛、多塞平、度洛西汀、艾司西酞普兰、氟西汀、米氮平、去甲替林、帕罗西汀、舍曲林、曲唑酮和文拉法辛。通过受试者操作特征曲线下面积(AROC)来衡量预测的准确性。

结果

我们的分析揭示了影响处方模式的几个关键因素,包括患者的合并症、既往用药情况、年龄和性别。抗抑郁药使用史较长(四种或更多种既往用药)是各类抗抑郁药中最常见的因素。年龄影响处方模式,米氮平和曲唑酮在老年患者中使用更频繁,而氟西汀和舍曲林在年轻个体中更常见。特定病情因素包括曲唑酮用于治疗失眠,阿米替林或去甲替林用于治疗头痛。帕罗西汀、文拉法辛和舍曲林更常用于女性,而安非他酮和多塞平常用于有烟草使用障碍和阿片类药物依赖的患者。每种药物的预测因素从51个(多塞平)到168个(西酞普兰)不等,交叉验证的AROC评分平均为76.3%。

结论

我们的研究结果为影响循证抗抑郁药处方实践的细微因素提供了有价值的见解,为更个性化、有效的抑郁症治疗奠定了基础。需要进一步研究以在其他现有数据库中验证这些模型。这些发现有助于更全面地理解抗抑郁药处方实践,并有可能改善抑郁症管理中的患者治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验