Shen Peng, Li Xingchuan, Luo Yaojing, Guo Yali, Zhao Xiaolin, Chu Ke
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081, China.
ACS Nano. 2022 May 24;16(5):7915-7925. doi: 10.1021/acsnano.2c00596. Epub 2022 Apr 22.
Electrocatalytic nitrogen reduction reaction (NRR) is a promising approach for renewable NH production, while developing the NRR electrocatalysis systems with both high activity and selectivity remains a significant challenge. Herein, we combine catalyst and electrolyte engineering to achieve a high-efficiency NRR enabled by a Se-vacancy-rich WSe catalyst in water-in-salt electrolyte (WISE). Extensive characterizations, theoretical calculations, and in situ X-ray photoelectron/Raman spectroscopy reveal that WISE ensures suppressed H evolution, improved N affinity on the catalyst surface, as well as an enhanced π-back-donation ability of active sites, thereby promoting both activity and selectivity for the NRR. As a result, an excellent faradaic efficiency of 62.5% and NH yield of 181.3 μg h mg is achieved with WSe in 12 m LiClO, which is among the highest NRR performances reported to date.
电催化氮还原反应(NRR)是一种很有前景的可再生制氨方法,然而开发兼具高活性和选择性的NRR电催化体系仍然是一项重大挑战。在此,我们将催化剂和电解质工程相结合,以实现由富硒空位的WSe催化剂在盐包水电解质(WISE)中实现的高效NRR。广泛的表征、理论计算以及原位X射线光电子能谱/拉曼光谱表明,WISE能抑制析氢反应,提高催化剂表面对氮的亲和力,以及增强活性位点的π-反馈给电子能力,从而提高NRR的活性和选择性。结果,在12 m LiClO中使用WSe实现了62.5%的优异法拉第效率和181.3 μg h mg的氨产率,这是迄今为止报道的最高NRR性能之一。