Suppr超能文献

基于机器学习和药效团的虚拟筛选方法联合筛选针对 LasR 的抗生物膜抑制剂。

Combined machine learning and pharmacophore based virtual screening approaches to screen for antibiofilm inhibitors targeting LasR of .

机构信息

Department of Biochemistry, Biotechnology and Bioinformatics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, Tamil Nadu, India.

出版信息

J Biomol Struct Dyn. 2023 Jun;41(9):4124-4142. doi: 10.1080/07391102.2022.2064331. Epub 2022 Apr 22.

Abstract

, a virulent pathogen affects patients with cystic fibrosis and nosocomial infections. Quorum sensing (QS) mechanism plays a crucial role in causing these ailments by mediating biofilm formation and expressing virulent genes. A novel approach to circumvent this bacterial infection is by hindering its QS network. Targeting LasR of system serves beneficial as it holds the top position in QS system cascade. Here, we have integrated machine learning, pharmacophore based virtual screening, molecular docking and simulation studies to look for new leads as inhibitors for LasR. Support vector machine (SVM) learning algorithm was used to generate QSAR models from 66 antagonist dataset. The top three models resulted in correlation coefficient (R) values of 0.67, 0.86, and 0.91, respectively. The correlation coefficient (R) values on external test set were found to be 0.62, 0.57, and 0.55, respectively. A four-point pharmacophore model was developed. The pharmacophore hypothesis AAAD_1 was used to screen for potential leads against MolPort database in ZincPharmer. The leads which showed predicted pIC50 value of >8.00 by SVM models were subjected to docking analysis that reranked the compounds based on docking scores. Four top leads namely ZINC3851967 N-[3,5-bis(trifluoromethyl)phenyl]-5-tert-butyl-6-chloropyrazine-2-carboxamide, ZINC4024175 4-Amino-1-[(2R,3S,4S,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-2-oxopyrimidine-5-carbonitrile, ZINC2125703 N-[(5-Methoxy-4,7-dimethyl-2-oxo-2H-chromen-3-yl)acetyl]-beta-alanine, and ZINC3851966 N-[3,5-Bis(trifluoromethyl)phenyl]5-tert-butylpyrazine-2-carboxamide were selected. These compounds were checked for its stability by performing a molecular dynamics simulation for a period of 100 ns. The ADME properties of the leads were also determined. Hence, the compounds identified in this study can be used as possible leads for developing a novel inhibitor for LasR.Communicated by Ramaswamy H. Sarma.

摘要

铜绿假单胞菌是一种毒力很强的病原体,会影响囊性纤维化和医院感染的患者。群体感应(QS)机制通过介导生物膜形成和表达毒力基因,在引起这些疾病方面起着至关重要的作用。一种规避这种细菌感染的新方法是阻止其 QS 网络。针对系统的 LasR 是有益的,因为它在 QS 系统级联中处于最高位置。在这里,我们结合了机器学习、基于药效团的虚拟筛选、分子对接和模拟研究,以寻找新的抑制剂作为 LasR 的抑制剂。支持向量机(SVM)学习算法用于从 66 个拮抗剂数据集生成 QSAR 模型。前三个模型分别产生了 0.67、0.86 和 0.91 的相关系数(R)值。在外部测试集上的相关系数(R)值分别为 0.62、0.57 和 0.55。开发了一个四点药效团模型。药效团假设 AAAD_1 用于在 ZincPharmer 中筛选 MolPort 数据库中的潜在先导化合物。通过 SVM 模型预测 pIC50 值大于 8.00 的先导化合物进行对接分析,根据对接得分重新排列化合物。根据对接评分重新排列化合物。四个顶级先导化合物分别为 ZINC3851967 N-[3,5-双(三氟甲基)苯基]-5-叔丁基-6-氯吡嗪-2-甲酰胺、ZINC4024175 4-氨基-1-[(2R,3S,4S,5S)-3,4-二羟基-5-羟甲基吗啉-2-基]-2-氧代嘧啶-5-甲腈、ZINC2125703 N-[(5-甲氧基-4,7-二甲基-2-氧代-2H-色烯-3-基)乙酰基]-β-丙氨酸和 ZINC3851966 N-[3,5-双(三氟甲基)苯基]-5-叔丁基吡嗪-2-甲酰胺。对这些化合物进行了 100ns 的分子动力学模拟,以检查其稳定性。还确定了先导化合物的 ADME 特性。因此,本研究中鉴定的化合物可作为开发 LasR 新型抑制剂的潜在先导化合物。由 Ramaswamy H. Sarma 传达。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验