Faculty of Engineering, Computing, and Science, Swinburne University of Technology, Sarawak, Malaysia.
Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Victoria, Australia.
Bioengineered. 2023 Dec;14(1):2243416. doi: 10.1080/21655979.2023.2243416.
The rampant spread of multidrug-resistant strains severely threatens global health. This severity is compounded against the backdrop of a stagnating antibiotics development pipeline. Moreover, with many promising therapeutics falling short of expectations in clinical trials, targeting the quorum sensing (QS) system remains an attractive therapeutic strategy to combat infection. Thus, our primary goal was to develop a drug prediction algorithm using machine learning to identify potent LasR inhibitors. In this work, we demonstrated using a Multilayer Perceptron (MLP) algorithm boosted with AdaBoostM1 to discriminate between active and inactive LasR inhibitors. The optimal model performance was evaluated using 5-fold cross-validation and test sets. Our best model achieved a 90.7% accuracy in distinguishing active from inactive LasR inhibitors, an area under the Receiver Operating Characteristic Curve value of 0.95, and a Matthews correlation coefficient value of 0.81 when evaluated using test sets. Subsequently, we deployed the model against the Enamine database. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies, Molecular Dynamics simulations, MM-GBSA analysis, and Free Energy Landscape analysis. Our data indicate that several of our chosen top hits showed better ligand-binding affinities than naringenin, a competitive LasR inhibitor. Among the six top hits, five of these compounds were predicted to be LasR inhibitors that could be used to treat -associated infections. To our knowledge, this study provides the first assessment of using an MLP-based QSAR model for discovering potent LasR inhibitors to attenuate infections.
耐药菌株的猖獗传播严重威胁着全球健康。在抗生素研发管道停滞不前的背景下,这种严重性更加严重。此外,由于许多有前途的疗法在临床试验中未能达到预期效果,因此针对群体感应 (QS) 系统仍然是一种有吸引力的治疗策略,可用于对抗感染。因此,我们的主要目标是开发一种使用机器学习的药物预测算法,以识别有效的 LasR 抑制剂。在这项工作中,我们使用多层感知机 (MLP) 算法和 AdaBoostM1 进行了演示,以区分活性和非活性 LasR 抑制剂。通过 5 倍交叉验证和测试集评估了最佳模型性能。我们的最佳模型在区分活性和非活性 LasR 抑制剂方面的准确率为 90.7%,在使用测试集评估时,接收器操作特征曲线下的面积值为 0.95,马修斯相关系数值为 0.81。随后,我们将模型部署到 Enamine 数据库中。使用分子对接研究、分子动力学模拟、MM-GBSA 分析和自由能景观分析进一步评估排名靠前的化合物的靶标结合活性。我们的数据表明,我们选择的几个顶级命中化合物的配体结合亲和力优于竞争性 LasR 抑制剂柚皮素。在这六个顶级命中化合物中,其中五个被预测为 LasR 抑制剂,可用于治疗相关感染。据我们所知,这项研究首次评估了使用基于 MLP 的 QSAR 模型来发现有效的 LasR 抑制剂来减轻感染。