Suppr超能文献

RetroGNN:通过从慢反合成软件中学习,实现虚拟筛选和从头设计的可合成性的快速估计。

RetroGNN: Fast Estimation of Synthesizability for Virtual Screening and De Novo Design by Learning from Slow Retrosynthesis Software.

机构信息

Mila and Université de Montréal, 6666 St-Urbain Street, Montreal, Canada H2S 3H1.

Department of Chemistry, McGill University, 801 Sherbooke Street W, Montreal, Canada H3A 0B8.

出版信息

J Chem Inf Model. 2022 May 23;62(10):2293-2300. doi: 10.1021/acs.jcim.1c01476. Epub 2022 Apr 22.

Abstract

De novo molecule design algorithms often result in chemically unfeasible or synthetically inaccessible molecules. A natural idea to mitigate this problem is to bias these algorithms toward more easily synthesizable molecules using a proxy score for synthetic accessibility. However, using currently available proxies can still result in highly unrealistic compounds. Here, we propose a novel approach, RetroGNN, to estimate synthesizability. First, we search for routes using synthesis planning software for a large number of random molecules. This information is then used to train a graph neural network to predict the outcome of the synthesis planner given the target molecule, in which the regression task can be used as a synthesizability scorer. We highlight how RetroGNN can be used in generative molecule-discovery pipelines together with other scoring functions. We evaluate our approach on several QSAR-based molecule design benchmarks, for which we find synthesizable molecules with state-of-the-art scores. Compared to the virtual screening of 5 million existing molecules from the ZINC database, using RetroGNNScore with a simple fragment-based de novo design algorithm finds molecules predicted to be more likely to possess the desired activity exponentially faster, while maintaining good druglike properties and being easier to synthesize. Importantly, our deep neural network can successfully filter out hard to synthesize molecules while achieving a 10 times speedup over using retrosynthesis planning software.

摘要

从头分子设计算法通常会导致化学上不可行或合成上不可及的分子。减轻这个问题的一个自然想法是使用合成可及性的代理分数来偏向这些算法,使它们更倾向于更容易合成的分子。然而,使用当前可用的代理仍然可能导致非常不现实的化合物。在这里,我们提出了一种新的方法 RetroGNN 来估计可合成性。首先,我们使用合成规划软件为大量随机分子搜索路线。然后,将此信息用于训练图神经网络,以根据目标分子预测合成规划器的结果,其中回归任务可用作可合成性评分器。我们强调了 RetroGNN 如何与其他评分函数一起用于生成分子发现管道中。我们在几个基于 QSAR 的分子设计基准上评估了我们的方法,对于这些基准,我们找到了具有最先进分数的可合成分子。与从 ZINC 数据库中筛选 500 万个现有分子的虚拟筛选相比,使用 RetroGNNScore 和简单的基于片段的从头设计算法可以更快地找到预测具有所需活性的分子,同时保持良好的药物特性并且更容易合成。重要的是,我们的深度神经网络可以成功地筛选出难以合成的分子,同时比使用反合成规划软件快 10 倍。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验