Suppr超能文献

AOP173 关键事件相关途径预测器 - 在线应用程序,用于预测参与 MWCNTs 诱导肺纤维化的转录组途径的基准剂量下限 (BMDLs)。

AOP173 key event associated pathway predictor - online application for the prediction of benchmark dose lower bound (BMDLs) of a transcriptomic pathway involved in MWCNTs-induced lung fibrosis.

机构信息

QSAR Lab, ul. Trzy Lipy 3, Gdańsk, Poland.

Faculty of Chemistry, University of Gdansk, Gdansk, Poland.

出版信息

Nanotoxicology. 2022 Mar;16(2):183-194. doi: 10.1080/17435390.2022.2064250. Epub 2022 Apr 22.

Abstract

Nano-QSAR model allows for prediction of the toxicity of materials that have not been experimentally tested before by linking the nano-related structural properties with the biological responses induced by nanomaterials. Prediction of adverse effects caused by substances without having to perform time- and cost-consuming experiments makes QSAR models promising tools for supporting risk assessment. However, very often, newly developed nano-QSAR models are not used in practice due to the complexity of their algorithms, the necessity to have experience in chemoinformatics, and their poor accessibility. In this perspective, the aim of this paper is to encourage developers of the QSAR models to take the effort to prepare user-friendly applications based on predictive models. This would make the developed models accessible to a wider community, and, in effect, promote their further application by regulators and decision-makers. Here, we describe a web-based application that enables to predict the transcriptomic pathway-level response perturbated in the lungs of mice exposed to multiwalled carbon nanotubes. The developed application is freely available at http://aop173-event1.nanoqsar-aop.com/apps/aop_app. It requires only two types of input information related to analyzed nanotubes (their length and diameter) to assess the doses that initiate the inflammation process that may lead to lung fibrosis.

摘要

纳米定量构效关系(nano-QSAR)模型通过将纳米相关结构特性与纳米材料引起的生物反应联系起来,实现了对未经实验测试的材料毒性的预测。通过预测物质引起的不良影响,而无需进行耗时且昂贵的实验,QSAR 模型成为支持风险评估的有前途的工具。然而,由于算法的复杂性、对化学生信学经验的需求以及较差的可访问性,新开发的纳米 QSAR 模型在实践中并未得到广泛应用。从这个角度来看,本文的目的是鼓励 QSAR 模型的开发者努力为预测模型准备用户友好的应用程序。这将使开发的模型更容易被更广泛的社区访问,并有效地促进监管机构和决策者进一步应用。在这里,我们描述了一个基于网络的应用程序,该应用程序能够预测暴露于多壁碳纳米管的小鼠肺部转录组途径水平反应受到干扰的情况。开发的应用程序可免费在 http://aop173-event1.nanoqsar-aop.com/apps/aop_app 上获取。它仅需要与分析的纳米管(长度和直径)相关的两种类型的输入信息,即可评估引发可能导致肺纤维化的炎症过程的剂量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验