Department of Computer Science, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.
Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
PLoS One. 2022 Apr 22;17(4):e0267471. doi: 10.1371/journal.pone.0267471. eCollection 2022.
The development of new drugs is a very complex and time-consuming process, and for this reason, researchers have been resorting heavily to drug repurposing techniques as an alternative for the treatment of various diseases. This approach is especially interesting when it comes to emerging diseases with high rates of infection, because the lack of a quickly cure brings many human losses until the mitigation of the epidemic, as is the case of COVID-19. In this work, we combine an in-house developed machine learning strategy with docking, MM-PBSA calculations, and metadynamics to detect potential inhibitors for SARS-COV-2 main protease among FDA approved compounds. To assess the ability of our machine learning strategy to retrieve potential compounds we calculated the Enrichment Factor of compound datasets for three well known protein targets: HIV-1 reverse transcriptase (PDB 4B3P), 5-HT2A serotonin receptor (PDB 6A94), and H1 histamine receptor (PDB 3RZE). The Enrichment Factor for each target was, respectively, 102.5, 12.4, 10.6, which are considered significant values. Regarding the identification of molecules that can potentially inhibit the main protease of SARS-COV-2, compounds output by the machine learning step went through a docking experiment against SARS-COV-2 Mpro. The best scored poses were the input for MM-PBSA calculations and metadynamics using CHARMM and AMBER force fields to predict the binding energy for each complex. Our work points out six molecules, highlighting the strong interaction obtained for Mpro-mirabegron complex. Among these six, to the best of our knowledge, ambenonium has not yet been described in the literature as a candidate inhibitor for the SARS-COV-2 main protease in its active pocket.
新药的开发是一个非常复杂和耗时的过程,因此,研究人员一直在大量采用药物重用来作为治疗各种疾病的替代方法。当涉及到具有高感染率的新兴疾病时,这种方法尤其有趣,因为缺乏快速的治疗方法会导致许多人死亡,直到疫情得到缓解,就像 COVID-19 一样。在这项工作中,我们结合了内部开发的机器学习策略与对接、MM-PBSA 计算和元动力学,以在 FDA 批准的化合物中检测出对 SARS-COV-2 主蛋白酶有潜在抑制作用的化合物。为了评估我们的机器学习策略检索潜在化合物的能力,我们计算了三种著名的蛋白质靶标(HIV-1 逆转录酶(PDB 4B3P)、5-HT2A 血清素受体(PDB 6A94)和 H1 组胺受体(PDB 3RZE))的化合物数据集的富集因子。每个靶标的富集因子分别为 102.5、12.4 和 10.6,这些都是被认为是显著值。关于鉴定可能抑制 SARS-COV-2 主蛋白酶的分子,机器学习步骤输出的分子通过与 SARS-COV-2 Mpro 的对接实验进行了筛选。最佳得分构象被输入到 MM-PBSA 计算中,并使用 CHARMM 和 AMBER 力场进行元动力学模拟,以预测每个复合物的结合能。我们的工作指出了六种分子,突出了 Mpro-mirabegron 复合物中获得的强相互作用。在这六种分子中,据我们所知,氨苯喋啶在其活性口袋中尚未被描述为 SARS-COV-2 主蛋白酶的候选抑制剂。