Suppr超能文献

通过未折叠蛋白反应重塑内质网质量控制。

Reshaping endoplasmic reticulum quality control through the unfolded protein response.

机构信息

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.

出版信息

Mol Cell. 2022 Apr 21;82(8):1477-1491. doi: 10.1016/j.molcel.2022.03.025.

Abstract

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.

摘要

内质网质量控制(ERQC)途径包括伴侣蛋白、折叠酶和降解因子,可确保内质网蛋白折叠和运输到下游分泌环境的保真度。然而,多种因素,包括组织特异性分泌蛋白质组、环境和遗传损伤以及机体衰老,对内质网质量控制提出了挑战。因此,一个关键问题是:细胞如何适应内质网质量控制以适应正常生理和疾病过程中遇到的多样化、不断变化的需求?答案在于未折叠蛋白反应(UPR),这是一种由内质网应激激活的信号机制。在哺乳动物中,UPR 由三种信号通路组成,这些信号通路受内质网膜蛋白 IRE1、ATF6 和 PERK 的调控。激活后,这些 UPR 通路重塑 ERQC,以减轻细胞应激并恢复 ER 功能。在这里,我们描述了 UPR 信号通路如何适应 ERQC,强调了它们在维持组织内 ER 功能方面的重要性,并探讨了靶向 UPR 以减轻与蛋白质错误折叠疾病相关病理的潜力。

相似文献

1
Reshaping endoplasmic reticulum quality control through the unfolded protein response.
Mol Cell. 2022 Apr 21;82(8):1477-1491. doi: 10.1016/j.molcel.2022.03.025.
2
Elucidation of molecular mechanism of the unfolded protein response.
Keio J Med. 2024;73(1):13. doi: 10.2302/kjm.ABSTRACT_73_1-2.
3
Small molecule strategies to harness the unfolded protein response: where do we go from here?
J Biol Chem. 2020 Nov 13;295(46):15692-15711. doi: 10.1074/jbc.REV120.010218. Epub 2020 Sep 4.
5
Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans.
Prog Mol Subcell Biol. 2021;59:279-303. doi: 10.1007/978-3-030-67696-4_13.
7
IRE1 signaling increases PERK expression during chronic ER stress.
Cell Death Dis. 2024 Apr 18;15(4):276. doi: 10.1038/s41419-024-06663-0.
8
The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress.
Mol Biol Cell. 2011 Nov;22(22):4390-405. doi: 10.1091/mbc.E11-06-0510. Epub 2011 Sep 14.
10
Bone and the Unfolded Protein Response: In Sickness and in Health.
Calcif Tissue Int. 2023 Jul;113(1):96-109. doi: 10.1007/s00223-023-01096-x. Epub 2023 May 27.

引用本文的文献

4
Membrane Contact Sites in Proteostasis and ER Stress Response.
Contact (Thousand Oaks). 2025 Jul 28;8:25152564251363050. doi: 10.1177/25152564251363050. eCollection 2025 Jan-Dec.
5
Unveiling the antioxidant and anti-inflammatory potential of syringic acid: mechanistic insights and pathway interactions.
Front Pharmacol. 2025 Jul 9;16:1615294. doi: 10.3389/fphar.2025.1615294. eCollection 2025.
6
PERK and IRE1α promote exosome secretion via blocking lysosomal degradation of multiple vesicular body.
J Biol Chem. 2025 Jul 21;301(8):110504. doi: 10.1016/j.jbc.2025.110504.
8
Secretion of transthyretin: molecular mechanisms dependent on the endoplasmic reticulum.
Front Physiol. 2025 Jul 1;16:1623185. doi: 10.3389/fphys.2025.1623185. eCollection 2025.
10
Research progress on endoplasmic reticulum homeostasis in acute kidney injury.
Front Pharmacol. 2025 Jun 20;16:1595845. doi: 10.3389/fphar.2025.1595845. eCollection 2025.

本文引用的文献

1
Pharmacologic IRE1/XBP1s activation promotes systemic adaptive remodeling in obesity.
Nat Commun. 2022 Feb 1;13(1):608. doi: 10.1038/s41467-022-28271-2.
2
Pharmacological targeting of endoplasmic reticulum stress in disease.
Nat Rev Drug Discov. 2022 Feb;21(2):115-140. doi: 10.1038/s41573-021-00320-3. Epub 2021 Oct 26.
3
The Cross-Links of Endoplasmic Reticulum Stress, Autophagy, and Neurodegeneration in Parkinson's Disease.
Front Aging Neurosci. 2021 Jun 3;13:691881. doi: 10.3389/fnagi.2021.691881. eCollection 2021.
4
ER-phagy responses in yeast, plants, and mammalian cells and their crosstalk with UPR and ERAD.
Dev Cell. 2021 Apr 5;56(7):949-966. doi: 10.1016/j.devcel.2021.03.005. Epub 2021 Mar 24.
6
Enforced dimerization between XBP1s and ATF6f enhances the protective effects of the UPR in models of neurodegeneration.
Mol Ther. 2021 May 5;29(5):1862-1882. doi: 10.1016/j.ymthe.2021.01.033. Epub 2021 Feb 3.
7
ER-Phagy, ER Homeostasis, and ER Quality Control: Implications for Disease.
Trends Biochem Sci. 2021 Aug;46(8):630-639. doi: 10.1016/j.tibs.2020.12.013. Epub 2021 Jan 25.
8
A Molecular Mechanism for Turning Off IRE1α Signaling during Endoplasmic Reticulum Stress.
Cell Rep. 2020 Dec 29;33(13):108563. doi: 10.1016/j.celrep.2020.108563.
10
Small molecule strategies to harness the unfolded protein response: where do we go from here?
J Biol Chem. 2020 Nov 13;295(46):15692-15711. doi: 10.1074/jbc.REV120.010218. Epub 2020 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验